Характеристика, классификация и примеры автотрофных организмов

Деление грибов по способу питания

Питание грибов: особенности и способы

У царства есть разные методы. По способу питания различают три типа:

  • сапрофиты;
  • симбионты;
  • паразиты.

Сапрофиты питаются мертвой органикой. Среди всех типов питания сапротрофный считается самым распространенным. Данная разновидность играет важную роль в круговороте веществ. Они минерализируют почву, а также освобождают земельный слой от мертвых животных.

  • солома;
  • перегной;
  • листва;
  • ветки, пни;
  • остатки животных – рога, перья.

Каждый вид растет на конкретном субстрате. Опенок выбирает листву, ложноопенок – хвойные, навозники любят насыщенное азотом территории. Человек встречается также с другими видами сапрофитов в домашнем хозяйстве. Пример — плесень. Разновидностью сапрофитов являются гумусовые типы, которые растут на лугах, полянах. Дождевики, шампиньоны относятся к данному типу.

Питание грибов особенности и способы

Отдельным особняком стоят хищники. Благодаря видоизмененным частям тела – гифам, сетям мицелия – хищники способны ловить другие организмы.

Паразиты живут за счет других организмов, главным образом – растений. Паразиты внедряются в древесные трещины и сращиваются с деревьями. По мере внедрения внутри сосудов растений образуются белые волокна. К паразитам относятся спорынья, фитофтора и ржавчинники. Есть виды, которые живут за счет других представителей царства. Паразиты превращаются в сапрофитов в благоприятной среде обитания.

Питание грибов особенности и способы

Отдельной категорией являются ксилотрофы, которые разрушают древесину. С одной стороны, они питаются органическими веществами при поддержке растений, с другой – не прочь переварить и древесину.

Симбиоты напрямую не вредят своим хозяевам. Их особенность – выстраивание выгодного взаимодействия. Яркий пример – лишайники и микориза. Лишайник представляет собой смесь с водорослью. Микориза – ассоциация с корнем растения. Союз взаимовыгоден – гриб получает нужное количество минералов и органики, а растение увеличивает эффективность впитывание веществ (за счет повышенной площади всасывания).

Питание грибов особенности и способы

Автотрофное питание грибов

Автотрофное питание характеризуется автономностью – организмам не нужны другие органические соединения, так как они способным превращать неорганику в нужные элементы и минералы. Для этого требуются химические вещества. Автотрофы – это растения и часть бактерий. Фотосинтез относится именно к автотрофному способу питания.

Царству чуждо автотрофное питание. Это подтверждается научными исследованиями. Тем не менее, в науке существуют споры по поводу причисления конкретным видов к царству. Есть конкретный список организмов, которые ближе к растениям или бактериям, но раньше считалось, что они являются грибами.

Гетеротрофное питание грибов

Гетеротрофы получают пищу из органических веществ. Три основных процесса лежат в основе питания:

  1. всасывание;
  2. переваривание;
  3. ассимиляция.

С помощью всасывания вещества поступают внутрь организма. Благодаря перевариванию расщепляются сложные органические соединения, а ассимиляция встраивает полученные элементы в организм. Организм усваивает минералы и другие соединения.

Питание грибов особенности и способы

Гетеротрофы делятся на консументов и редуцентов. Грибы относятся к последнему типу и являются конечным звеном пищеварительной цепи. Благодаря разветвленному мицелию охватывается большая площадь всасывания, что обеспечивает постоянный приток необходимой пищи. У грибов, как и у других организмов, есть метаболизм. Полученная глюкоза идет на дыхание и энергию.

Автотрофы и гетеротрофы: характеристика, сходства и различия

В этой главе мы разберем особенности жизнедеятельности двух основных групп и выясним, чем отличаются автотрофы от гетеротрофов.

Автотрофы – организмы, самостоятельно синтезирующие органические вещества из неорганических. В этой группе оказываются некоторые виды бактерий и почти все организмы, принадлежащие к царству растений. В ходе своей жизнедеятельности автотрофы утилизируют различные неорганические вещества, поступающие извне (углекислый газ, азот, сероводород, железо и другие), задействуя их в реакциях синтеза сложных органических соединений (в основном это углеводы и белки).

Гетеротрофные организмы питаются готовыми органическими веществами, они не способны синтезировать их самостоятельно. К этой группе относятся грибы, животные (в том числе человек), некоторые бактерии и даже часть растений (некоторые паразитические виды).

Как мы видим, главное отличие гетеротрофов от автотрофов заключается в химической природе необходимых им питательных веществ. Отличается и сущность процессов их питания. Автотрофные организмы затрачивают энергию при преобразовании неорганических веществ в органические, гетеротрофы энергию при питании не затрачивают.

Автотрофы и гетеротрофы разделяются еще на две группы в зависимости от используемого источника энергии (в первом случае) и от пищевого субстрата, используемого микроорганизмами второго типа.

Автотрофы и гетеротрофы занимают определенные позиции в пищевой цепи. Автотрофы всегда являются продуцентами — они создают органические вещества, которые позже проходят путь через всю цепь. Гетеротрофы становятся консументами различных порядков (как правило, в этой категории оказываются животные) и редуцентами (грибы, микроорганизмы).

Пищевая цепь в экосистеме

Иными словами, автотрофы и гетеротрофы образуют между собой трофические связи. Это имеет важнейшее значение для экологической обстановки в мире, поскольку именно за счет трофических связей осуществляется круговорот различных веществ в природе.

Сравнительная таблица характеристик автотрофов и гетеротрофов

ОТЛИЧИТЕЛЬНЫЕ ПРИЗНАКИ АВТОТРОФЫ ГЕТЕРОТРОФЫ
1 Происхождение названия Грец. autos – сам + trophe – еда, питание Грец. heteros – другой + trophe – еда, питание
2 Синтез органических веществ из неорганических Способны Не способны
3 Источник углерода Углекислый газ и карбонаты Углекислый газ и карбонаты
4 Способ получения энергии Используют солнечную и химическую энергию Используют энергию готовых органических веществ
5 Роль в экосистемах Продуценты Консументы, редуценты
6 Представители Все зеленые растения, некоторые бактерии Большинство бактерий, грибы, некоторые высшие паразитические растения, животные, человек

Источники

https://ru.wikipedia.org/wiki/Автотрофыhttps://ru.wikipedia.org/wiki/Миксотрофыhttps://scienceland.info/biology6/autotrophic-heterotrophichttps://appteka.ru/encik/encik_a/avtotrofy.htmhttps://biology.kiev.ua/voprosy-i-otvety/11-class/privedite-primery-avtotrofnyx-geterotrofnyx-saprotrofnyx-organizmov-k-kakim-ekologicheskim-kategorij-oni-prinadlezhat/https://biology.kiev.ua/tablicy/10-class-tab/obmen-veshestv-i-energii/sravnitelnaya-xarakteristika-avtotrofov-i-geterotrofov/https://fb.ru/article/105710/avtotrofyi-i-geterotrofyi-harakteristika-shodstva-i-razlichiyahttps://www.polesye-eco.com.ua/avtotrofy-p-p-p-p-avtotro1319030.html

Типы автотрофов

Ученые классифицируют автотрофы в зависимости от того, как они получают свою энергию. Типы автотрофов включают фотоавтотрофы и хемоавтотрофы.

фотоавтотрофов

Фотоавтотрофы – это организмы, которые получают энергию для производства органических материалов из солнечного света. Фотоавтотрофы включают все растения, зеленые водоросли и бактерии которые выполняют фотосинтез.

Все фотоавтотрофы выполняют фотосинтез – слово, которое происходит от корневых слов «свет» и «сделать». Фотоавтотрофы захватывают фотоны от Солнца и собирают их энергию, используя ее для выполнения важных биохимических процессов, таких как создание АТФ.

Фотоавтотрофы делают больше, чем просто топливо и органические соединения для таких гетеротрофов, как мы!

Многие фотоавтотрофы берут углерод из атмосферы и используют его для производства сахаров и других молекул, которые сохраняют энергию Солнца в своих молекулярные связи, Чтобы сделать это, они принимают молекулы СО2, который создается неживыми геологическими процессами, и выделяют молекулы О2 – также известного как кислород, которым мы должны дышать!

Считается, что свободного кислорода в атмосфере Земли не было до тех пор, пока фотоавтотрофы не стали обычным явлением в морях Земли. Затем они произвели столько свободного кислорода, что большое количество железа, которое ранее было растворено в океанской воде, вступило в реакцию с кислородом и превратилось в ржавчину!

Этот процесс создал скалы, называемые полосатыми железными образованиями, на которые мы все еще можем взглянуть сегодня, чтобы увидеть эту историю нашей Земли. Выпуск большого количества свободного кислорода в атмосферу Земли с помощью фотоавтотрофов проложил путь для крупных животных, таких как мы, которые нуждаются в высокоэффективном процессе аэробного дыхания выжить.

Считается, что часть кислорода, вырабатываемого фотоавтотрофами, также создала озоновый слой Земли, который позволил жизни перемещаться на сушу, не опасаясь повреждения ДНК от ультрафиолетового излучения Солнца.

хемоавтотрофов

Хемоавтотрофы – это организмы, которые получают энергию от неорганических химических процессов. Сегодня хемоавтотрофы чаще всего встречаются в глубоководных средах, которые не получают солнечного света. Многим нужно жить вокруг глубоководных вулканических жерл, которые выделяют достаточно тепла, чтобы позволить метаболизму происходить с высокой скоростью.

В качестве источников энергии хемоавтотрофы используют летучие химические вещества, такие как молекулярный водород, сероводород, элементарная сера, двухвалентное железо и аммиак. Это делает их подходящими для жизни в местах, которые могут быть токсичными для многих других организмов, а также в местах без солнечного света. Хемоавтотрофы обычно являются бактериями или архебактерии Так как их метаболизм обычно недостаточно эффективен, чтобы поддерживать многоклеточность.

Ученые предположили, что жизнь может существовать в темных, химически изменчивых средах, таких как моря Титана на луне Юпитера, используя метаболизм, сходный с тем, который наблюдается у хемоавтотрофов на Земле. Доказательств такой жизни пока не найдено, но некоторые ученые считают, что спектр метаболических вариантов, предлагаемых хемосинтез резко расширяется круг мест во вселенной, где мы можем ожидать найти жизнь.

На самом деле неизвестно, были ли фотоавтотрофы или хемоавтотрофы первыми формами жизни на Земле. Многие поддерживают идею о том, что первые клетки были фотосинтезирующими, поскольку солнечный свет сияет на всей поверхности Земли. Но некоторые ученые считают, что вулканические участки в глубоком море или на поверхности Земли могли бы обеспечить более концентрированную энергию и более летучие химические вещества, что потенциально может привести к созданию первых клеток.

Эти ученые предполагают, что эти клетки могли бы затем развить фотосинтез в качестве источника энергии, который работал бы в любой точке земной поверхности, которую они распространяют дальше от своих вулканических точек происхождения.

Потому что отдельные клетки и их биохимия не окаменеть хорошо, мы никогда не узнаем, были ли хемоавтотрофы или фотоавтотрофы первыми формами жизни на Земле.

Какие организмы относятся к автотрофам

Энергия света и углекислого газа обеспечивает жизнь подавляющего количества автотрофов – растений, к которым также относятся и мхи.

Водоросли, представляющие собой наиболее древний и простой тип растений, многообразны, а многих из них можно разглядеть только в микроскоп. Даже одноклеточные водоросли, такие как хлорелла, способны к фотосинтезу.

Содержание хлорофилла в клетках – прерогатива не только растений. Некоторые бактерии также содержат этот пигмент и способны синтезировать питательные вещества из световой энергии.

Цианобактерии – одни из древнейших микроорганизмов, питающихся подобным образом и выделяющих кислород. Возможно благодаря им атмосфера молодой Земли наполнилась кислородом миллиарды лет назад.

Микроскопические водоросли и зеленые бактерии способны вступать в симбиоз с грибами. В результате такого взаимодействия образуется симбиотический организм – лишайник.

Каждый участник симбиоза вносит свой вклад – водоросли и цианобактерии добывают питательные вещества с помощью фотосинтеза, а гриб поглощает готовые элементы.

Совмещение различных типов питания встречается не только у лишайников. Некоторые растения помимо автотрофного питания усваивают полезные вещества из тел других организмов – насекомых, мелких животных.

Такие растения называются плотоядными и используют различные виды ловушек для поимки жертвы.

Венерина мухоловка

Например, росянка использует клейкие волоски на кончиках листьев, листья венериной мухоловки захлопываются, а ловушка непентеса выглядит как кувшин с крышкой.

Некоторые одноклеточные водоросли также являются миксотрофами. К примеру, клеточная поверхность хламидомонады способна поглощать жидкость со всеми микроорганизмами, что там находятся.

Бактериям эвглены зеленой, чья модель поведения зависит от освещенности, может быть присуща автотрофность или гетеротрофность.

Хемотрофный тип питания распространен гораздо меньше. Энергию, которая выделяется как результат реакции окисления, способны поглощать простейшие микроорганизмы. Их уникальность заключается в независимости от энергии Солнца.

Эти микроорганизмы могут приспосабливаться к экстремальным условиям обитания – на дне океана, куда не проникает свет, в телах живых существ, в горячих гейзерах.

Фотосинтез

Валовая первичная продукция происходит за счет фотосинтеза. Это также основной способ, которым первичные производители берут энергию и производят / отпускают ее в другом месте. Это делают растения, кораллы, бактерии и водоросли. Бактерии — более недавняя находка в процессе фотосинтеза с первичными продуцентами, поскольку они обнаружен в почве. Во время фотосинтеза первичные продуценты берут энергию солнца и превращают ее в энергию, сахар и кислород. Первичным производителям также нужна энергия для преобразования этой же энергии в другом месте, поэтому они получают ее из питательных веществ. Один из видов питательных веществ — азот.

Что такое автотрофные бактерии

Автотрофные (от греч. «авто»- «сам», «трофе» — «пища»), то есть самопитающиеся, бактерии обитают в различных средах и экологических нишах: почвенной, воздушной, водной, минеральной. Автотрофы не так многочисленны, как гетеротрофы. Большинство автотрофов бесцветны, и лишь немногие из них окрашены в зеленый или пурпурный цвет.

Они считаются первой формой жизни на планете, возникли примерно 3,5 млрд. лет назад. Автотрофы сами производят органические вещества из неорганических. Автотрофными бактериями являются:

  • Цианобактерии, или сине – зеленые водоросли. В их клетках содержится хлорофилл. Они могут создавать органические вещества, при этом используя энергию солнца. Благодаря цианобактериям миллиарды лет назад атмосферу Земли наполнил кислород.
  • Железобактерии и серобактерии используют энергию, получаемую из химических реакций, то есть они преобразуют одни минеральные вещества в другие.

Бактерии, синтезирующие вещества в результате фотосинтеза, называются фототрофными, в результате хемосинтеза – хемотрофные.

В своем развитии автотрофные бактерии независимы и автономны  от жизнедеятельности  других организмов, они относятся к свободноживущим организмам. Это значит, что им не нужно вторгаться в сторонние организмы или разлагать мертвые органические вещества с целью получения нужных для жизни питательных веществ.

Автотрофы преимущественно обитают в почве.

Автотрофные бактерии потребляют углерод, являющийся неорганическим веществом, для синтеза клетки. Они получают энергию или за счет фотосинтеза, применяя световую энергию, или при хемосинтезе, то есть окисляя такие неорганические соединения, как аммиак, нитриты, сероводород  и железосодержащие соли.

Бактерии являются самым распространенным видом живых организмов, обитающих на Земле. Они образуют самостоятельно царство. Это простейшие одноклеточные микроорганизмы, не имеющие оформленного клеточного ядра. Ядерное вещество распределяется по всей цитоплазме. Бактерии относятся к прокариотам. Они размножаются путем деления клетки надвое. Как правило, бактерии имеют форму шара, палочки или спирали, изогнутые или сложенные из кокков. На сегодняшний день известно более 2500 видов бактерий.

Являясь неприхотливыми организмами,  бактерии очень широко распространены на планете. Они способны существовать в разных условиях (вода, песок, лед, дно водоемов, почва и песок, горячие источники), при разных температурах; в щелях и порах; на поверхности тела и во внутренних органах животных и человека.

Бактериям, как и любым живым клеткам, нужны питательные вещества и энергия для построения белков и управления биохимическими процессами. Бактерии потребляют азот, воду, углерод в больших количествах. Они также нуждаются в железе и фосфоре. Одни виды бактерий могут потреблять органические молекулы, чтобы получить энергию, а другие виды бактерий восполняют свою энергию из неорганических источников. Первый вид бактерий относится к гетеротрофам. Второй вид бактерий производит пищу самостоятельно, путем преобразования световой энергии или химических неорганических веществ, получая из них энергию, необходимую для их жизнедеятельности. Их относят к автотрофным бактериям. Большинство известных бактерий являются гетеротрофами.

Автотрофы и гетеротрофы: характеристика, сходства и различия

В этой главе мы разберем особенности жизнедеятельности двух основных групп и выясним, чем отличаются автотрофы от гетеротрофов.

Автотрофы – организмы, самостоятельно синтезирующие органические вещества из неорганических. В этой группе оказываются некоторые виды бактерий и почти все организмы, принадлежащие к царству растений. В ходе своей жизнедеятельности автотрофы утилизируют различные неорганические вещества, поступающие извне (углекислый газ, азот, сероводород, железо и другие), задействуя их в реакциях синтеза сложных органических соединений (в основном это углеводы и белки).

Гетеротрофные организмы питаются готовыми органическими веществами, они не способны синтезировать их самостоятельно. К этой группе относятся грибы, животные (в том числе человек), некоторые бактерии и даже часть растений (некоторые паразитические виды).

Как мы видим, главное отличие гетеротрофов от автотрофов заключается в химической природе необходимых им питательных веществ. Отличается и сущность процессов их питания. Автотрофные организмы затрачивают энергию при преобразовании неорганических веществ в органические, гетеротрофы энергию при питании не затрачивают.

Автотрофы и гетеротрофы разделяются еще на две группы в зависимости от используемого источника энергии (в первом случае) и от пищевого субстрата, используемого микроорганизмами второго типа.

Автотрофы и гетеротрофы занимают определенные позиции в пищевой цепи. Автотрофы всегда являются продуцентами — они создают органические вещества, которые позже проходят путь через всю цепь. Гетеротрофы становятся консументами различных порядков (как правило, в этой категории оказываются животные) и редуцентами (грибы, микроорганизмы).

Пищевая цепь в экосистеме

Иными словами, автотрофы и гетеротрофы образуют между собой трофические связи. Это имеет важнейшее значение для экологической обстановки в мире, поскольку именно за счет трофических связей осуществляется круговорот различных веществ в природе.

Сравнительная таблица характеристик автотрофов и гетеротрофов

ОТЛИЧИТЕЛЬНЫЕ ПРИЗНАКИ АВТОТРОФЫ ГЕТЕРОТРОФЫ
1 Происхождение названия Грец. autos – сам + trophe – еда, питание Грец. heteros – другой + trophe – еда, питание
2 Синтез органических веществ из неорганических Способны Не способны
3 Источник углерода Углекислый газ и карбонаты Углекислый газ и карбонаты
4 Способ получения энергии Используют солнечную и химическую энергию Используют энергию готовых органических веществ
5 Роль в экосистемах Продуценты Консументы, редуценты
6 Представители Все зеленые растения, некоторые бактерии Большинство бактерий, грибы, некоторые высшие паразитические растения, животные, человек

Видео

Источники

  • https://ru.wikipedia.org/wiki/Автотрофыhttps://ru.wikipedia.org/wiki/Миксотрофыhttp://scienceland.info/biology6/autotrophic-heterotrophichttp://appteka.ru/encik/encik_a/avtotrofy.htmhttp://biology.kiev.ua/voprosy-i-otvety/11-class/privedite-primery-avtotrofnyx-geterotrofnyx-saprotrofnyx-organizmov-k-kakim-ekologicheskim-kategorij-oni-prinadlezhat/http://biology.kiev.ua/tablicy/10-class-tab/obmen-veshestv-i-energii/sravnitelnaya-xarakteristika-avtotrofov-i-geterotrofov/http://fb.ru/article/105710/avtotrofyi-i-geterotrofyi-harakteristika-shodstva-i-razlichiyahttp://www.polesye-eco.com.ua/avtotrofy-p-p-p-p-avtotro1319030.html

Автотрофы – первые в цепочке

Слово «автотроф» имеет греческое происхождение и состоит из двух корней – «авто» – сам, и «трофи» – питание. Автотрофами называют организмы, способные потреблять неорганические вещества из окружающей среды и, используя их, синтезировать сложные органические соединения.

Автотрофы расположены на первой ступеньке пищевой цепи. Они являются источником того органического вещества, из которого состоит все живое на Земле. К автотрофам причисляют растения, водоросли и некоторые бактерии. Энергию, необходимую для синтеза органики, автотрофы получают либо от Солнца (процесс фотосинтеза), либо от химических реакций.

См. также

Фонд Викимедиа. 2010.

Смотреть что такое «Автотрофы» в других словарях:

От Auto -auto-автомобили. С Питание, автоподдержка, 1) организмы, производящие необходимые вещества 2) организмы с точки зрения выполняемых функций в обмене материалами и энергией в экосистеме. Some A. (Sunshine …….. Экологический словарь

Автотрофы — (из Современной энциклопедии автотрофов)

Аутонутриция — (от аутот. Энциклопедический словарь.

Автотрофы — (от авт. Энциклопедический словарь)

Автотроф — это организм, который может использовать углекислый газ в качестве единственного или основного источника углерода, имеет ферментную систему для ассимиляции и может синтезировать все компоненты клетки. Некоторые ……. Микробиологический словарь.

Независимый. Это аббревиатура, обозначающая независимый организм. Геологический словарь. 2 x объем. М: Недра. Курируемый К.Н. Паффенхольц и др. 1978 … Геологическая энциклопедия.

Автотрофы — ткани, из которых состоит все живое — нежелательные органические вещества из неорганических … Резюме Биохимический словарь.

Автотрофы — (от авто и греч. питательный корм, пища) (autotrophs), организмы, состоящие из неорганического вещества (в основном воды, углекислого газа и неорганических соединений азота), все из которых необходимы для жизни органического вещества …

AutoTrophs -OutoTrophs t Sritis Ekologija Ir aplinkotyraapibrėjtisorganizmai, Sintetinantys OrganinesMedžiagagasIšNeorganinijunginių (Anglies dioksido ir Vandens). Atitikmenys: англ. Independent trophic organism? Независимые трофические кофакторы вок. независимые трофические организмы …

Автотрофы — организмы, образующие органические вещества из неорганических соединений. К независимым питательным веществам относятся наземные растения (производство органического материала из углекислого газа и воды в процессе фотосинтеза), водоросли, фото…

Автотрофы, гетеротрофы: сравнительная характеристика

Автотрофы получают углерод из неорганических источников, например, углекислый газ (CO2), в то время как гетеротрофы получают свою долю углерода от других организмов. Автотрофы обычно являются растениями, гетеротрофы – животными. Автотрофы и гетеротрофы отличаются друг от друга по многим показателям. Автотрофы создают себе питание фотосинтезом или хемосинтезом при помощи неживых компонентов экосистемы.

Гетеротрофы зависят от автотрофов в пищевом плане. Автотрофы напрямую зависят от энергии от солнца и преобразовывают неорганическое вещество в органику. Гетеротрофы зависят от солнечной энергии лишь косвенно, а органические вещества приобретают от автотрофов и используют их в метаболических процессах.

Механизм

Самостоятельные формы питательных веществ характерны для растений, цианобактерий и некоторых животных. Клетки образуют органические соединения из неорганических материалов (углекислого газа, воды и солей) под воздействием солнечного света. Этот процесс называется фотосинтезом.

Основным источником энергии является солнце. Диапазон красного и синего света улавливается хлорофиллом, особым зеленым пигментом. Без хлорофилла фотосинтез был бы невозможен. В клетках травы пигмент содержится в хлоропластах, полуавтономных органоидах, состоящих из

Под оболочкой (их количество зависит от вида растения) находится слой, гелеобразное вещество, содержащее крахмал, ДНК, рибосомы и капельки жира.

Фолликулы состоят из ламинатов и зерен. Пластинки — это длинные мембраны, соединяющие гранулы и представляющие собой стопки видимых монет. В некоторых источниках фолликул и пластина являются синонимами. Фолликул содержит хлорофилл и белковый переносчик — цитохром.

Это читается следующим образом

Рисунок 1. Структура хлоропласта.

Процесс фотосинтеза состоит из двух фаз.

В световой фазе вырабатывается энергия, которая расходуется в теневой фазе.Световая фаза состоит из двух этапов.

  • фотофосфорилирование – синтез АТФ за счёт энергии света;
  • фотолиз воды – расщепление воды в присутствии света.

Кислород — это легкая фаза, обусловленная продуктом.

Теневая фаза направлена на синтез глюкозы из углекислого газа с затратой энергии (АТФ). Этот процесс называется «Круг Кельвина». Глюкоза — это моносахарид, который является источником энергии для всех живых организмов.

Рисунок 2.Фазы света и тени.

Некоторые животные (восточная эмеральда Elysia) включают хлоропласты в свои клетки, поедая растения. У цианобактерий фотосинтез происходит не через хлоропласты, а через световое субъядро, содержащее хлорофилл.

Фотосинтез способствовал насыщению атмосферы свободным кислородом. Первыми «производителями» кислорода были цианобактерии, появившиеся 2,5 миллиарда лет назад.

Рисунок 3.Фотосинтетическая мембрана цианобактерий.

Оцените статью
Домашний эксперт
Добавить комментарий