Формулы площади треугольника
Пояснения к формулам: a, b, c — длины сторон треугольника, площадь которого мы хотим найти r — радиус вписанной в треугольник окружности R — радиус описанной вокруг треугольника окружности h — высота треугольника, опущенная на сторону p — полупериметр треугольника, 1/2 суммы его сторон (периметра) α — угол, противолежащий стороне a треугольника β — угол, противолежащий стороне b треугольника γ — угол, противолежащий стороне c треугольника ha, hb, hc — высота треугольника, опущенная на сторону a, b, c
Обратите внимание, что приведенные обозначения соответствуют рисунку, который находится выше, чтобы при решении реальной задачи по геометрии Вам визуально было легче подставить в нужные места формулы правильные значения.
Площадь треугольника равна половине произведения высоты треугольника на длину стороны на которую эта высота опущена (Формула 1). Правильность этой формулы можно понять логически. Высота, опущенная на основание, разобьет произвольный треугольник на два прямоугольных. Если достроить каждый из них до прямоугольника с размерами b и h, то, очевидно, площадь данных треугольников будет равна ровно половине площади прямоугольника (Sпр = bh)
Площадь треугольника равна половине произведения двух его сторон на синус угла между ними (Формула 2 ) (см. пример решения задачи с использованием этой формулы ниже). Несмотря на то, что она кажется непохожей на предыдущую, она легко может быть в нее преобразована. Если из угла B опустить высоту на сторону b, окажется, что произведение стороны a на синус угла γ по свойствам синуса в прямоугольном треугольнике равно проведенной нами высоте треугольника, что и даст нам предыдущую формулу
Площадь произвольного треугольника может быть найдена через произведение половины радиуса вписанной в него окружности на сумму длин всех его сторон (Формула 3), проще говоря, нужно полупериметр треугольника умножить на радиус вписанной окружности (так легче запомнить)
Площадь произвольного треугольника можно найти, разделив произведение всех его сторон на 4 радиуса описанной вокруг него окружности (Формула 4)
Формула 5 представляет собой нахождение площади треугольника через длины его сторон и его полупериметр (половину суммы всех его сторон)
Формула Герона (6) — это представление той же самой формулы без использования понятия полупериметра, только через длины сторон
Площадь произвольного треугольника равна произведению квадрата стороны треугольника на синусы прилежащих к этой стороне углов деленного на двойной синус противолежащего этой стороне угла (Формула 7)
Площадь произвольного треугольника можно найти как произведение двух квадратов описанной вокруг него окружности на синусы каждого из его углов. (Формула 8)
Если известна длина одной стороны и величины двух прилежащих к ней углов, то площадь треугольника может быть найдена как квадрат этой стороны, деленный на двойную сумму котангенсов этих углов (Формула 9)
Если известна только длина каждой из высот треугольника (Формула 10), то площадь такого треугольника обратно пропорциональна длинам этих высот, как по Формуле Герона
Формула 11 позволяет вычислить площадь треугольника по координатам его вершин, которые заданы в виде значений (x;y) для каждой из вершин
Обратите внимание, что получившееся значение необходимо взять по модулю, так как координаты отдельных (или даже всех) вершин могут находиться в области отрицательных значений
См. также площадь равнобедренного треугольника.
Примечание. Далее приведены примеры решения задач по геометрии на нахождение площади треугольника. Если Вам необходимо решить задачу по геометрии, похожей на которую здесь нет — пишите об этом в форуме. В решениях вместо символа «квадратный корень» может применяться функция sqrt(), в которой sqrt — символ квадратного корня, а в скобках указано подкоренное выражение. Иногда для простых подкоренных выражений может использоваться символ √
Площадь прямоугольного треугольника — формулы и калькуляторы
Прямоугольный треугольник — это треугольник, в котором один угол прямой (90°).
По основанию и высоте площадь прямоугольно треугольника равна половине произведения катетов треугольника.
Площадь прямоугольного треугольника по двум катетам — расчет:
Формула | Результат |
S = ½ × a × b | |
Катет a |
|
Катет b |
Площадь прямоугольного треугольника через гипотенузу и угол:
Формула | Результат |
S = ¼ × c² × sin (2α) | |
Сторона c |
|
Угол α |
Площадь прямоугольного треугольника через катет и угол — онлайн калькулятор:
Формула | Результат |
S = ½ × b² × tg (α) | |
Сторона b |
|
Угол α |
Если в треугольник вписана окружность и известны отрезки, на которые она делит гипотенузу, то площадь прямоугольно треугольника равна произведению этих отрезков.
Площадь прямоугольного треугольника по отрезкам, на которые делит гипотенузу вписанная окружность:
Формула | Результат |
S = d × e | |
Отрезок d |
|
Отрезок e |
Площадь прямоугольного треугольника через гипотенузу и вписанную окружность — расчет:
Формула | Результат |
S = r × (r + c) | |
Сторона с |
|
Радиус r |
Площадь прямоугольно треугольника по трем сторонам (формула Герона) равна произведению разностей полупериметра треугольника и каждого из катетов. Полупериметр p = ½ × (a + b + c)
Площадь прямоугольного треугольника по формуле Герона:
Формула | Результат |
S = ( ½ × (a + b + c) — a) × ( ½ × (a + b + c) — b) | |
Сторона a |
|
Сторона b |
|
Сторона c |
Свойства треугольника
- длина любой стороны треугольника меньше суммы длин двух остальных сторон, но больше разницы длин двух остальных сторон;
- высота треугольника образует прямой угол со стороной, к которой проведена;
- площадь треугольника равна половине произведения длины высоты треугольника и длины стороны, к которой проведена высота SABC=a⋅h/2.
Пример. Можно ли построить треугольник из отрезков с длинами: 3 см, 7 см, 4 см?
Необходимо вспомнить следующее правило: если сумма любых двух сторон меньше либо равна оставшейся стороне, то треугольник построить не получится. 3 + 4 = 7, значит построить треугольник не получится.
Пример. Можно ли построить треугольник из отрезков с длинами: 16 см, 32 см, 18 см?
Необходимо вспомнить следующее правило: если сумма любых двух сторон меньше либо равна оставшейся стороне, то треугольник построить не получится. Так как для укаанных длин будут справедливы следующие равенства: 16 + 18 > 32 и 16 > 32 − 18, то треугольник построить получится.
Пример. Можно ли построить треугольник из отрезков с длинами: 1 см, 3 см, 7 см ?
Необходимо вспомнить следующее правило: если сумма любых двух сторон меньше либо равна оставшейся стороне, то треугольник построить не получится. 3 + 1
Пример. Одна сторона, которая образует прямой угол прямоугольного треугольника ABD, равна 4 см, другая сторона, которая образует прямой угол, в 2 раза меньше. Определи площадь треугольника.
Пусть AB = 4 см, тогда сторона BC = 4 : 2 = 2. И тогда площадь треугольника будет равна: S = 2 * 4 : 2 = 4 см2
Одна сторона, которая образует прямой угол прямоугольного треугольника ABD, равна 12 см, другая сторона, которая образует прямой угол, в 3 раза меньше. Определи площадь треугольника.
Пусть AB = 12 см, тогда сторона BC = 12 : 3 = 4. И тогда площадь треугольника будет равна: S = 12 * 4 : 2 = 24 см2
Рассчитай площадь треугольника ABC, если дана площадь клетки — 1 м2.
В треугольнике от вершины B проведём перпендикуляр к стороне AC. Таким образом данный треугольник разбит на два прямоугольных треугольника. Каждый из них — половина прямоугольника.
Поэтому площадь можно рассчитать следующим образом:
SABC=4⋅4/2+3⋅4/2=(16+12)/2=28/2=14м2.
Известно, что периметр равностороннего треугольника — 21 см. Определи периметр данного четырёхугольника, который состоит из равносторонних треугольников.
Известно, что периметр равностороннего треугольника — 21 см.
Значит, одна сторона треугольника равна 7 см.
Периметр данного четырёхугольника состоит из 4 таких сторон, значит, равен 28 см.
Дан равносторонний треугольник. 2 раза сделано следующее:
1. на всех сторонах отмечены и соединены серединные точки. 2. На сторонах внутреннего треугольника опять отмечены и соединены серединные точки. Треугольник, который образовался на этот раз, закрашен розовым цветом.
Внутренний треугольник состоит из 4 маленьких треугольников, такими же являются остальные 3 треугольника, следовательно, всего 4⋅4=16 маленьких треугольников.
2. Чему равна площадь большого треугольника, если площадь розового треугольника равна 4 м²?
Площадь большого треугольника равна 16⋅4=64 м².
3. Сколько маленьких треугольников получится, если повторить эти действия (построить такую конструкцию) 4 раза?
Очевидно, что в каждой следующей конструкции число маленьких треугольников увеличивается в 4 раза.
Если повторить эти действия (построить такую конструкцию) 4 раза, то общее число маленьких треугольников будет равняться 256.
4. Сколько маленьких треугольников получится, если повторить эти действия (построить такую конструкцию) 3 раза?
Очевидно, что в каждой следующей конструкции число маленьких треугольников увеличивается в 4 раза.
Если повторить эти действия (построить такую конструкцию) 3 раза, то общее число маленьких треугольников будет равняться 64.
Определи площадь данных фигур, если площадь одной клетки равна 6 см2. 1)
Фигура образует 2 клетки, а ее площадь равна 6 *2 = 12 кв.см.
У второй фигуры будет 8 клеток. Площадь фигуры равна 8 ⋅ 6 = 48см2 .
Подумай, как построены данные фигуры, и определи, сколько клеток будет у следующих двух фигур, если их построить по той же закономерности.
У третьей фигуры — 18 клеток, у четвертой — 32 клетки.
Различные типы треугольников в зависимости от длины их сторон
Разносторонний треугольник
Мы узнаем разносторонний треугольник по трем сторонам, которые имеют разную длину. Эта треугольная форма может быть построена только с тремя разными углами. Кроме того, один из них может быть прямым углом (или углом 90 °). В общем, название «произвольный треугольник» используется для разностороннего треугольника.
Равнобедренный треугольник
Мы говорим, что треугольник равнобедренный, если он имеет две стороны одинаковой длины и два равных угла при основании. Равнобедренный треугольник также можно узнать по тому факту, что его высота представляет его ось симметрии, его медиану и биссектрису.
Прямоугольный треугольник
Прямоугольный треугольник обязательно имеет прямой угол. Другими словами, сумма двух других его углов должна быть равна 90°. Прямоугольный треугольник также имеет гипотенузу.
Это противоположная сторона вершине с прямым углом. Прямой треугольник может быть разносторонним (или любым), если его три стороны имеют разную длину.
Кроме того, он может быть равнобедренным в том случае, если он имеет два одинаковых катета.
Равносторонний треугольник
Треугольник называется равносторонним, если он имеет три стороны одинаковой длины. Поэтому все его углы также равны и каждый по 60°. В равностороннем треугольнике любая высота также выступает в качестве медианы и биссектрисы.
Определение площади треугольника
Сейчас, на примере покажем, что такое площадь,
а также, как можно найти площадь треугольника.
Площадь треугольника, можно очень легко объяснить
на примере прямоугольного треугольника в клеточном поле.
Площадь, в нашем случае, будет равна количеству клеток.
Для наглядности, нарисуем прямоугольный треугольникABC, со длинами сторон 3, 4 и 5, как на рисунке 2. Отметим, что он прямоугольный.
Посчитаем количество клеток, которые занимает треугольник.3 полных клетки, и 4 неполных клетки, но для того, чтобы узнать
площадь треугольника в клеточном поле нам нужно узнать количество
полных клеток, которые занимает весь треугольник. Наша задача в том,
чтобы неполные клетки преобразовать в полные.
Для этого нарисуем второй треугольник, так,
чтобы получился прямоугольник, как на рисунке 3.
Как видим, весь прямоугольник занимает 12 полных клеток.
Формула площади прямоугольника равна произведению
одной стороны на другую — \( S = ab \),
поэтому площадь прямоугольника равна 3 * 4 = 12 клеткам.
Площадь треугольника, из которого состоит прямоугольник,
можно найти по другой формуле: \( S = \frac{1}2 ab \).
Подставив значения длин сторон, получаем — S = 0.5 * 3 * 4,
из чего следует, что S = 6 клетками, или же квадратным сантиметрам.
Формулы площади треугольника применяют, только,
и только тогда, когда невозможно узнать площадь
треугольника, глядя на рисунок, или просто посчитав клетки.
Что такое треугольник
Треугольник — это геометрическая фигура. По определению, это многоугольник, имеющий три стороны. Следовательно, треугольник также должен иметь три угла.
Чтобы иметь возможность вычислить площадь треугольника, мы должны сначала знать меру его основания, а также высоту. Основание треугольника представляет одну из его сторон. Высота, с другой стороны, представляет собой каждую из трех прямых линий, которые проходят через одну из вершин треугольника и перпендикулярны стороне, лежащей напротив принятой вершины (то есть перпендикулярно основанию).
Прежде всего, помните, что треугольник состоит из трех сторон и трех углов. Это значит, что у него должно быть три вершины. Треугольник, вершинами которого являются A, B и C, может быть представлен как: ΔABC. Существуют разные виды треугольников. Они могут быть классифицированы двумя различными способами: либо по свойству его сторон, либо по свойству его углов.
Для прямоугольного треугольника
В случае треугольника с прямым углом формулы для нахождения площади будут немного отличаться. Найти S можно будет несколькими способами.
По двум сторонам
Если вам известны оба катета данной фигуры, рассчитать S можно умножив их друг на друга, а потом разделив на пополам:
\(S=\frac{a\times b}2\)
где a и b — катеты прямоугольного треугольника.
Через гипотенузу и острый угол
Зная длину гипотенузы и величину одного из острых углов, мы можем найти один из его катетов по определению косинуса. И уже потом можем использовать формулу для нахождения площади треугольника через две стороны и синус угла между ними.
Начнем с поиска катета:
\(\cos\left(\alpha\right)=\frac ac\)
\(a=c\times\cos\left(\alpha\right)\)
где c — гипотенуза треугольника, a — его катет, а α —угол между ними.
Подставляем получившееся значение в формулу \(S=\frac12a\times c\times\sin\alpha\), получается:
\(S=c^2\times\cos\left(\alpha\right)\times\sin\left(\alpha\right)\)
Через катет и прилежащий угол
В этом случае нужно будет использовать следующую формулу:
\(S=\frac12\times a^2\times\tan\left(\alpha\right)\)
Через радиус вписанной окружности и гипотенузу
Зная радиус вписанной в данную фигуру окружности и гипотенузу, мы можем использовать следующее уравнение для расчета:
\(S=r\times(r+c)\)
где r — радиус вписанной окружности, c — гипотенуза.
Через вписанную окружность
Радиус, опущенный в точку касания окружности и гипотенузы прямоугольного треугольника, делит эту гипотенузу на неравные отрезки. Если нам известны величины этих отрезков, мы можем найти площадь фигуры по формуле:
\(S=с_1\times с_2\)
где \(с_1\) и \(с_2\) — неравные отрезки гипотенузы.
По формуле Герона
Если мы знаем длины всех сторон данного многоугольника, мы можем рассчитать S по формуле Герона:
\(S=(p-a)\times(p-b)\)
где \(p=\frac{a+b+c}2\) — полупериметр фигуры.
Площадь треугольника — калькуляторы для всех видов
Треугольники бывают остроугольными, тупоугольными, прямоугольными, разносторонними, равносторонними, равнобедренными. Рассмотренные в данном пункте калькуляторы и формулы подходят для всех видов треугольников.
Зная сторону треугольника (основание) и высоту проведенную к основанию, можно найти его площадь. Площадь треугольника будет равна половине произведения основания на высоту. Основанием треугольника может быть выбрана любая из сторон треугольника.
Площадь треугольника по основанию и высоте — калькулятор онлайн:
Формула | Результат |
S = ½ × a × h | |
Сторона a |
|
Высота h |
Если известно две стороны треугольника и угол между ними, то площадь данного треугольника вычисляется, как половина произведения этих сторон умноженная на синус угла между ними. Угол α между сторонами может быть любым: тупым, острым, прямым.
Площадь треугольника по двум сторонам и углу между ними — расчет:
Формула | Результат |
S = ½ × a × b × α | |
Сторона a |
|
Сторона b |
|
Угол α° между сторонами a и b |
Если известно три стороны треугольника и радиус вписанной окружности, то площадь данного треугольника вычисляется, как половина суммы этих сторон (полупериметр p = ½ × (a + b + c)) умноженная на радиус вписанной окружности.
Площадь треугольника по радиусу вписанной окружности и трем сторонам — онлайн калькулятор:
Формула | Результат |
S = r × ½ × (a + b + c) | |
Сторона a |
|
Сторона b |
|
Сторона c |
|
Радиус r вписанной окружности |
Если известно три стороны треугольника и радиус описанной окружности, то площадь треугольника равна частному от деления произведения сторон треугольника на четыре радиуса описанной около треугольника окружности.
Площадь треугольника по радиусу описанной окружности и трем сторонам — расчет:
Формула | Результат |
S = (a × b × c) ⁄ (4 × R) | |
Сторона a |
|
Сторона b |
|
Сторона c |
|
Радиус R описанной окружности |
Площадь треугольника по формуле Герона равна корню из произведения разностей полупериметра треугольника (p) и каждой из его сторон (a, b, c) на полупериметр. Полупериметр p = (a + b + c) × ½.
Площадь треугольника по формуле Герона — калькулятор онлайн:
Формула | Результат |
S = √ p × (p — a) × (p — b) × (p — c) | |
Сторона a |
|
Сторона b |
|
Сторона c |
Площадь произвольного треугольника по стороне и двум прилежащим углам — расчет:
Формула | Результат |
S = ½ × a² × (sin α × sin β) ⁄ sin (180 — (α + β)) | |
Сторона a |
|
Угол β° |
|
Угол α° |
Вывод формул для площади равностороннего треугольника
Утверждение 7.
- Если a – сторона равностороннего треугольника, то его площадь
Если h – равностороннего треугольника, то его площадь
Если r – радиус , то его площадь
Если R – радиус около равностороннего треугольника окружности, то его площадь
Доказательство.
- Рассмотрим рисунок 7.
Рис. 7
В силу утверждения 2
Рассмотрим рисунок 8.
Рис. 8
Поскольку
то
Рассмотрим рисунок 9.
Рис. 9
Поскольку у равностороннего треугольника , то . Следовательно,
Рассмотрим рисунок 10.
Рис. 10
Поскольку у равностороннего треугольника центр описанной окружности совпадает с точкой пересечения медиан, высот и биссектрис, то выполнено равенство Следовательно,
Доказательство утверждения 7 завершено.
Вывод формул для площади произвольного треугольника
Утверждение 1. Площадь треугольника можно найти по формуле
где a – любая сторона треугольника, а ha – , опущенная на эту сторону.
Доказательство.
Рис. 1
Достроив треугольник ABC до ABDC (рис. 1),
что и требовалось доказать.
Утверждение 2. Площадь треугольника можно найти по формуле
где a и b – две любые стороны треугольника, а С – угол между ними.
Доказательство.
Рис. 2
Поскольку
ha = b sin C ,
то, в силу утверждения 1, справедлива формула
что и требовалось доказать.
Утверждение 3. Площадь треугольника можно найти по формуле
где a – любая сторона треугольника, а B, С – прилежащие к ней углы.
Замечание. Докажем утверждение 3 в случае . Доказательство в случаях требует лишь незначительных изменений, совершить которые мы предоставляем читателю в качестве самостоятельного упражнения.
Доказательство.
Рис. 3
Поскольку (рис.3)
x = hactg C , y = hactg B ,
то
a = x + y == hactg C + hactg B == ha( ctg C + ctg B) .
Следовательно,
Поэтому
что и требовалось доказать.
Утверждение 4. Площадь треугольника можно найти по формуле
где a, b, c – стороны треугольника, а r – радиус .
Доказательство.
Рис. 4
Соединив центр O вписанной окружности с вершинами треугольника (рис.4), получим
что и требовалось доказать.
Утверждение 5. Площадь треугольника можно найти по формуле
где a, b, c – стороны треугольника, а R – радиус .
Доказательство.
Рис. 5
В силу справедливо равенство
.
Следовательно,
Поэтому
что и требовалось доказать.
Утверждение 6. Площадь треугольника можно найти по формуле:
S = 2R2 sin A sin B sin C ,
где A, B, С – углы треугольника, а R – радиус .
Доказательство.
Рис. 6
В силу справедливо равенство
.
Поэтому
a = 2R sin A , b = 2R sin B , c = 2R sin C ,
В силу утверждения 5
что и требовалось доказать.