Площадь треугольника
Площадь треугольника равна половине произведения любой из его сторон
и проведенной к ней высоты.
Доказательство
Рассмотрим треугольник $ABC$, в котором $BH$ – это высота.
Докажем, что $S_{ABC}=\dfrac{1}{2}\cdot BH\cdot AC.$
Возможны три случая:
- точка $H$ совпадает с одним из концов отрезка $AC$, например с точкой $C$;
- точка $H$ принадлежит отрезку $AC$ и не совпадает с его концами;
- точка $H$ лежит за пределами отрезка $AH$.
Первый случай
Пусть высота из точки $B$ падает в один из
концов отрезка $AC$, например в вершину $C$.
Тогда $BC=BH$ и $\triangle ABC$ – прямоугольный, следовательно, по
теореме получаем $S_{ABC}=\dfrac{1}{2}\cdot BH\cdot AC$.
Второй случай
Пусть высота $BH$ падает внутрь отрезка $AC$.
Тогда высота $BH$ разбивает треугольник $ABC$ на два прямоугольных треугольника $ABH$ и $BHC$,
следовательно, $S_{ABC}=S_{ABH}+S_{BHC}=\dfrac{1}{2}\cdot BH\cdot
AH+\dfrac{1}{2}\cdot BH\cdot HC=\dfrac{1}{2}\cdot BH\cdot
(AH+HC)=\frac{1}{2}\cdot BH\cdot AC$.
Третий случай
Пусть высота $BH$ падает вне отрезка $AC$, например за точку $C$.
Тогда
$S_{ABC}=S_{ABH}-S_{BCH}=\dfrac{1}{2}\cdot BH\cdot
AH-\dfrac{1}{2}\cdot BH\cdot CH=\dfrac{1}{2}\cdot BH\cdot
(AH-CH)=\dfrac{1}{2}\cdot BH\cdot AC$.
Формулы площади
Площадь геометрической фигуры
— часть поверхности, ограниченная замкнутым контуром данной фигуры. Величина площади выражается числом заключающихся в него квадратных единиц.
Формулы площади треугольника
1-ая формула
S
— площадь треугольника
a, b
— длины 2-х сторон треугольника
С
— угол между сторонами a и b
2-ая формула
S
— площадь треугольника
a
— длина стороны треугольника
h
— длина высоты, опущенной на сторону a
3-ья формула
S
— площадь треугольника
a, b, c
p
— полупериметр треугольника
4-ая формула
S
— площадь треугольника
r
— радиус вписанной окружности
p
— полупериметр треугольника
5-ая формула
S
— площадь треугольника
a, b, c
— длины 3-х сторон треугольника
R
— радиус описанной окружности
См. также: Программа для расчета площади треугольника.
Формулы площади квадрата:
1) Площадь квадрата равна квадрату длины его стороны (a).
2) Площадь квадрата равна половине квадрата длины его диагонали (d).
S
— площадь квадрата
a
— длина стороны квадрата
d
— длина диагонали квадрата
См. также: Программа для расчета площади квадрата.
Формула площади прямоугольника:
1) Площадь прямоугольника равна произведению длин двух его смежных сторон (a, b).
S
— площадь прямоугольника
a
— длина 1-ой стороны прямоугольника
b
— длина 2-ой стороны прямоугольника
См. также: Программа для расчета площади прямоугольника.
Формула площади параллелограмма:
1) Площадь параллелограмма равна произведению длины его основания на длину высоты (a, h).
S
— площадь параллелограмма
a
— длина основания
h
— длина высоты
См. также: Программа для расчета площади параллелограмма.
Формула площади трапеции:
1) Площадь трапеции равна произведению полусуммы ее оснований на высоту (a, b, h).
S
— площадь трапеции
a
— длина 1-ого основания
b
— длина 2-ого основания
h
— длина высоты трапеции
Как найти площадь прямоугольника
Формула площади прямоугольника S= a*b
Если в условии известна длина одной стороны и длина диагонали, то площадь найти можно, используя в таких задачах, теорему Пифагора, она позволяет найти длину стороны прямоугольного треугольника если известны длины двух других сторон.
Теорема Пифагора: a 2 + b 2 = c 2 , где a и b – стороны треугольника, а с – гипотенуза, самая длинная сторона.
Помни!
- Все квадраты – прямоугольники, но не все прямоугольники – квадраты. Так как:
- Прямоугольник — это четырехугольник со всеми прямыми углами.
- Квадрат — прямоугольник, у которого все стороны равны.
- Если ты находишь площадь, ответ всегда будет в квадратных единицах (мм 2 , см 2 , м 2 , км 2 и т.д.)
Как найти площадь прямоугольника? Площадь прямоугольника можно вычислить, если известны длины его сторон либо длина диагонали и угол между диагоналями.
I. Площадь прямоугольника равна произведению его длины на ширину.
Формула площади прямоугольника по сторонам
II. Площадь прямоугольника равна половине произведения квадрата его диагонали на синус угла между диагоналями.
Формула площади прямоугольника по диагонали и углу между диагоналями
В качестве угла между диагоналями может быть взят любой угол — как острый, так и тупой (поскольку синус тупого угла равен синусу смежного с ним острого угла).
Например, площадь прямоугольника
ABCD можно найти как
Таким образом, если требуется найти площадь прямоугольника, задача, как правило, сводится к нахождению либо длин его сторон, либо диагонали и угла между диагоналями.
Найти площадь прямоугольника, одна сторона которого на 5 см больше другой, а периметр равен 38 см.
Формула для нахождения периметра прямоугольника —
Пусть a=x см, тогда b=(x+5) см.
По условию, периметр равен 38 см. Составим уравнение:
Две фигуры называют равными, если одну их них можно так наложить на другую, что эти фигуры совпадут.
Площади равных фигур равны. Их периметры тоже равны.
Как найти площадь прямоугольника с разными сторонами. Площадь прямоугольника — это?
Определение. Площадь прямоугольника — это размер куска плоскости, лежащего внутри границ прямоугольника.
Правило. Для вычисления площади прямоугольника, если известны длины его сторон, достаточно перемножить длины двух прилежащих сторон. Результат записывается в единицах измерения площади. При необходимости результат можно укрупнить или раздробить (см. ).
Бим приложил листочек к углам донышка упаковки.
— Проверил: у упаковки четыре угла, и все они — прямые. Тогда донышко упаковки — прямоугольник.
Бом начал читать свои записи:
“Площадь прямоугольника — это размер куска плоскости, лежащего внутри границ прямоугольника. Как найти площадь прямоугольника (с разными сторонами), если известны длины его сторон? Достаточно перемножить длины двух прилежащих сторон. Результат записывается в единицах измерения площади”.
— Теперь надо измерить длины двух сторон. Упаковка — длинная, тогда лучше взять сантиметр.
Бим измерил упаковку.
— Короткая сторона 8 см, длинная — 72 см. Вспоминаем, что для вычисления площади прямоугольника надо длину одной стороны умножить на длину прилежащей стороны. Умножаем:
72 х 8 =576 кв.см (см2).
— Сейчас принесу из подсобки коробки, которые у меня есть, — побежал Бом.
И — надо же! — по дороге Бом встретил Олю, Колю и Васю, которые пришли пораньше на представление.
— Ребята, как хорошо, что вы здесь! Идемте, поможете нам с Бимом подобрать Буфетчице на день рождения коробку.
Бом достал из подсобки коробки, и они все вместе вернулись к Биму.
— Ребята, мы с Бимом измерили площадь упаковки конфет, которые мы хотим переложить в более красивую коробку. Красиво сложим и подарим Буфетчице на день рождения, — объяснил Бим.
— Давайте вычислим площадь донышка каждой коробки, — предложил Вася. — В коробку, у которой площадь донышка равна площади донышка упаковки, мы переложим конфеты.
— Как здорово, что Бом принес все коробки, донышки у которых имеют вид прямоугольника! — обрадовался Коля. — Как найти площадь прямоугольника с разными сторонами? Надо измерить длины двух прилежащих сторон в одинаковых единицах измерения длины и их перемножить, — получим площадь прямоугольника в единицах измерения площади. Для коробок удобнее всего измерять длины сторон в сантиметрах, а площадь самих прямоугольников уже будет в квадратных сантиметрах. Оля, давай проверим, что донышки коробок — прямоугольники.
Коля и Оля взяли листочек в клеточку и с помощью него проверили, что у донышек все углы прямые.
Затем Коля, Вася и Оля вооружились листочком в клеточку, линейкой и сантиметровой лентой и измерили в сантиметрах длины прилежащих сторон донышек коробок.
Первым управился Коля:
— У меня большая сторона 36 сантиметров и короткая 16 сантиметров. Получаем площадь моей коробки
36 х 16 = 576 (кв.см).
Следующим был Вася:
— У меня длина коробки 30 см, а ширина — 20 см. Для вычисления площади коробки надо длину умножить на ширину прямоугольника. Получаем:
30 х 20 = 600 (кв.см)
Оля измеряла тщательнее всех, ведь у нее коробка была похожа на квадрат. Но надо было убедиться, точно ли у этой коробки равны обе стороны. Так и оказалось:
— У меня прилежащие стороны одинаковые по длине, обе равны 24 см. Перемножаем длины двух прилежащих сторон, получаем: 24 х 24 = 576 (кв.см).
— Тогда у нас выходят 3 коробки с одинаковыми площадями донышек — у упаковки, — подытожил Бом:
8 х 72 = 576 (кв.см), —
и еще у двух коробок
16 х 36 = 576 (кв.см),
24 х 24 = 576 (кв.см),
а также одна коробка площадью больше, чем у упаковки
30 х 20 = 600 (кв.см).
— Какую же коробку выбрать? — озадаченно спросил Бим.
— Давай возьмем в виде квадрата, посмотрите какая здесь красивая крышка! — решил Бом.
Ребята выложили конфеты из упаковки в коробку.
— Ага, — посмотрел Бом. — получились три ряда. Какая же площадь донышка одного ряда? Длина ряда 24 см, ширина — 8 см. Значит площадь донышка одного ряда равна:
24 х 8 = 192 (кв.см).
Всего три одинаковых ряда
192 х 3 = 576 (кв.см).
Ура! Все совпадает!
Бим, все же, спросил:
— Сейчас мы измеряли площадь в квадратных сантиметрах. А какие еще есть единицы измерения площади?
Площадь прямоугольника через диагональ и периметр
Пример 4. Известны диагональ прямоугольника и периметр (Рис.5). Найти площадь прямоугольника.
Решение. Найдем сначала стороны прямоугольника. Запишем формулу Пифагора и формулу периметра прямоугольника:
(6) |
(7) |
Из формулы (7) найдем \( \small b \) и подставим в (6):
(8) |
(9) |
Упростив (9), получим квадратное уравнение относительно неизвестной \( a \):
(10) |
Вычислим дискриминант квадратного уравнения (10):
(11) |
Подставляя значения и в (11), получим:
Поскольку дискриминант неотрицательное число, то такой прямоугольник существует.
Стороны прямоугольника вычисляются из формул:
(12) |
Почему \( \small b \), как и \( \small a \) получается неотрицательным, посмотрите «примечание» на странице Прямоугольник. Онлайн калькулятор.
Площадь прямоугольника по двум сторонам равна:
\( \small S=a \cdot b \) | (13) |
Подставляя (12) в (13), получим:
\( \small S=\frac{\large P^2-D}{\large 16} \) | (14) |
Далее, из (11) и (14) следует:
\( \small S=\frac{\large P^2-4d^2}{\large 8}. \) | (15) |
Подставляя , в (15), получим:
Ответ:
Прямоугольник. Онлайн калькулятор
Площадь квадрата
Из известно, что для вычисления площади квадрата достаточно умножить его сторону саму на себя. Докажем это строго, используя лишь свойства площадей.
Попробуем вычислить площадь квадрата, если известна его сторона. Если она равна 2, то квадрат можно разбить на четыре единичных квадрата, а если она равна 3, то квадрат можно разделить уже на девять единичных квадратов:
Тогда площадь квадрата со стороной 2 равна 4, а со стороной 3 уже равна 9. В общем случае квадрат со стороной n (где n– ) можно разбить n2 единичных квадратов, поэтому его площадь будет равна n2.
Но что делать в случае, если сторона квадрата – это не целое, а дробное число? Пусть оно равно некоторой дроби 1/m, например, 1/2 или 1/3. Тогда поступим наоборот – разделим сам единичный квадрат на несколько частей. Получится почти такая же картина:
В общем случае единичный квадрат можно разбить на m2 квадратов со стороной 1/m. Тогда площадь каждого из таких квадратов (обозначим ее как S)может быть найдена из уравнения:
Снова получили, что площадь квадрата в точности равна его стороне, возведенной во вторую степень.
Наконец, рассмотрим случай, когда сторона квадрата равна произвольной дроби, например, 5/3. Возьмем квадраты со стороной 1/3 и построим из них квадрат, поставив 5 квадратов в ряд. Тогда его сторона как раз будет равна 5/3:
Площадь каждого маленького квадратика будет равна 1/9, а всего таких квадратиков 5х5 = 25. Тогда площадь большого квадрата может быть найдена так:
В общем случае, когда дробь имеет вид n/m, где m и n– натуральные числа, площадь квадрата будет равна величине
Получили, что если сторона квадрата – произвольное рациональное число, то его площадь в точности равна квадрату этой стороны. Конечно, возможна ситуация, когда сторона квадрата – это . Тогда осуществить подобное построение не получится. Здесь помогут значительно более сложные рассуждения, основанные на методе «от противного».
Предположим, что есть некоторое иррациональное число I, такое, что площадь квадрата (S) со стороной I НЕ равна величине I2. Для определенности будем считать, что I2<S (случай, когда I2>S, рассматривается абсолютно аналогично). Однако тогда, извлекая корень из обеих частей неравенства, можно записать, что
Далее построим два квадрата, стороны которых имеют длины I и R, и совместим их друг с другом:
Так как мы выбрали число R так, чтобы оно было больше I, то квадрат со стороной I является лишь частью квадрата со стороной R.Но часть меньше целого, значит, площадь квадрата со стороной I (а она равна S) должна быть меньше, чем площадь квадрата со стороной R (она равна R2):
из которого следует противоположный вывод – величина R2 меньше, чем S. Полученное противоречие показывает, что исходная утверждение, согласно которому площадь квадрата со стороной I НЕ равна I2, является ошибочным. А значит, площадь квадрата всегда равна его стороне, умноженной на саму себя.
Задание. Найдите площадь квадрата, если его сторона равна
Задание. Площадь квадрата равна 25. Найдите длину его стороны.
Решение. Пусть сторона квадрата обозначается буквой х (как неизвестная величина). Тогда условие, согласно которому его площадь равна 25, можно переписать в виде уравнения:
Его простейшее квадратное уравнение, для его решения надо просто извлечь квадратный корень из правой части:
Примечание. Строго говоря, записанное уравнение имеет ещё один корень – это число (– 5). Однако его можно отбросить, так как длина отрезка не может быть отрицательным числом. В более сложных геометрических задачах отрицательные корни также отбрасывают.
Задание. Численно площадь квадрата равна периметру квадрата (с учетом того, что площадь измеряется в см2, а периметр – в см). Вычислите его площадь.
Решение. Снова обозначим сторону квадрата как х, тогда площадь (S)и периметр (Р) будут вычисляться по формулам:
По условию эти величины численно равны, поэтому должно выполняться равенство, являющееся уравнением:
Естественно, сторона квадрата не может быть равна нулю, поэтому нас устраивает только ответ х = 4. Тогда и площадь, и периметр будут равны 16.
Ответ: 16 см2.
Обратите внимание, что ответ задачи зависит от единицы измерения. Если использовать миллиметры, то сторона квадрата окажется равной 40 мм, периметр будет равен 160 мм, а площадь составит 1600 мм2
Именно поэтому в условии задачи сказано, что площадь и периметр равны численно. «По-настоящему» равными бывают только величины, измеряемые в одинаковых единицах измерения.
Признаки и свойства прямоугольника
Как понять, решая очередную геометрическую задачу, с каким именно четырёхугольником мы имеем дело? Существуют три основных признака, по которым можно безошибочно определить, что речь идёт именно о прямоугольнике. Назовём их:
- фигура является четырёхугольником, три угла которого равны 90°,
- представленный четырёхугольник — это параллелограмм с равными диагоналями,
- параллелограмм, который имеет по крайней мере один прямой угол.
Поскольку прямоугольник — это параллелограмм (т. е. четырёхугольник с попарно параллельными противоположными сторонами), то для него будут выполняться все его свойства и признаки.
Формулы для вычисления длины сторон
В прямоугольнике противолежащие стороны равны и взаимно параллельны. Более длинную сторону принято называть длиной (обозначается a), более короткую — шириной (обозначается b). В прямоугольнике на изображении длинами являются стороны AB и CD, а шириной — AC и B. D. Также они перпендикулярны к основаниям (т. е. являются высотами).
Для нахождения сторон можно воспользоваться формулами, указанными ниже. В них приняты условные обозначения: a — длина прямоугольника, b — его ширина, d — диагональ (отрезок, соединяющий вершины двух углов, лежащих друг напротив друга), S — площадь фигуры, P — периметр, α угол между диагональю и длиной, β острый угол, который образован обеими диагоналями. Способы нахождения длин сторон:
- С использованием диагонали и известной стороны: a = √(d ² b ²), b = √(d ² a ²).
- По площади фигуры и одной из её сторон: a = S / b, b = S / a.
- При помощи периметра и известной стороны: a = (P — 2 b) / 2, b = (P — 2 a) / 2.
- Через диагональ и угол между ней и длиной: a = d sinα, b = d cosα.
- Через диагональ и угол β: a = d sin 0,5 β, b = d cos 0,5 β.
Периметр и площадь
Периметром четырёхугольника называют сумму длин всех его сторон. Чтобы вычислить периметр, могут использоваться следующие формулы:
- Через обе стороны: P = 2 (a + b).
- Через площадь и одну из сторон: P = (2S + 2a ²) / a, P = (2S + 2b ²) / b.
Площадь — это пространство, ограниченное периметром. Три основных способа для расчёта площади:
- Через длины обеих сторон: S = a*b.
- При помощи периметра и какой-либо одной известной стороны: S = (Pa — 2 a ²) / 2, S = (Pb — 2 b ²) / 2.
- По диагонали и углу β: S = 0,5 d ² sinβ.
Диагонали прямоугольника
В задачах школьного курса математики часто требуется хорошо владеть свойствами диагоналей прямоугольника. Перечислим основные из них:
- Диагонали равны друг другу и делятся на два равных отрезка в точке их пересечения.
- Диагональ определяется как корень суммы обеих сторон, возведённых в квадрат (следует из теоремы Пифагора).
- Диагональ разделяет прямоугольник на два треугольника с прямым углом.
- Точка пересечения совпадает с центром описанной окружности, а сами диагонали — с её диаметром.
Применяются следующие формулы для расчёта длины диагонали:
- С использованием длины и ширины фигуры: d = √(a ² + b ²).
- С использованием радиуса окружности, описанной вокруг четырёхугольника: d = 2 R.
Площадь прямоугольника через синус острого угла между диагоналями и длину диагонали
Диагонали в прямоугольнике равны, поэтому, чтобы вычислить площадь на основании длины диагонали и синуса острого угла между ними, следует воспользоваться следующей формулой: Площадь = Диагональ^2 × sin(острого угла между диагоналями)/2.
Периодически нам требуется знать площадь и объем комнаты. Эти данные могут понадобиться при проектировании отопления и вентиляции, при закупке стройматериалов и еще во многих других ситуациях. Также периодически требуется знать площадь стен. Все эти данные вычисляются легко, но предварительно придется поработать рулеткой — измерять все требуемые габариты. О том, как посчитать площадь комнаты и стен, объем помещения и пойдет речь дальше.
Кратко о прямоугольнике
Прямоугольник — геометрическая фигура, состоящая из четырех попарно равных и параллельных сторон, между которыми образованы прямые углы. Частный случай — квадрат (правильный четырехугольник), у которого стороны эквивалентны одному значению, а углы — прямые.
Однако определения недостаточно для идентификации фигуры. Для этой цели используются некоторые критерии, которые математики называют признаками. У фигуры также есть и свойства. Эти 2 термина новички путают на начальных этапах обучения. Чтобы этого не случилось, следует знать их формулировки.
Порядок идентификации
Простейшее правило идентификации прямоугольника — теорема из евклидовой геометрии. Ее формулировка имеет такой вид: если у четырехугольника 3 внутренних угла эквивалентны 90 градусам, он прямоугольник. Доказывается утверждение очень просто — посредством методики:
- Найти неизвестный четвертый угол (сумма градусных мер всех углов четырехугольника MNOP эквивалентна 360): ∠P = 360 — (90 + 90 + 90) = 90 (градусов).
- На основании полученного результата и определения фигура является прямоугольником.
Однако это утверждение не единственное, по которому возможно верно определить фигуру. Математики вывели и другие критерии, позволяющие идентифицировать прямоугольник. К ним относятся:
- Длины противоположных сторон равны.
- Углы являются прямыми, т. е. равными между собой.
- Равенство диагоналей.
- Результат суммы квадратов непротивоположных сторон эквивалентен произведению диагоналей. Это соотношение вывели из теоремы Пифагора для прямоугольного треугольника.
- Значения длин сторон не равны между собой, т. е. не является квадратом.
Первые 2 признака получаются из определения прямоугольника. На основании теоремы о диагоналях, которая гласит, что они равны между собой, получен третий признак. Чтобы доказать теорему, нужно схематически начертить прямоугольник МNОР, провести диагонали МО и NP. Они пересекутся в точке Т. При этом образуется 2 прямоугольных треугольника МNО и МNP. Далее требуется доказать их равенство.
Доказывается утверждение довольно просто. Для этого следует рассмотреть треугольники: общая сторона — MN, ∠М = ∠N (по II признаку прямоугольника) и NО = МР (по I признаку). Следовательно, треугольники равны и их гипотенузы (диагонали) так же равны.
Важные свойства
Для решения задач используются свойства, состоящие из доказанных утверждений и соотношений, при помощи которых находятся параметры фигуры. Например, зная значение диагонали, можно вычислить по формуле площадь прямоугольника. Основной список свойств, необходимых при решении задач и доказывании теорем:
- Все 4 угла — прямые.
- Противолежащие стороны параллельны между собой и эквивалентны.
- Сумма градусных мер внутренних углов эквивалентна 360.
- Диагонали делятся точкой пересечения, которая является центром описанной окружности и симметрии, на 2 равные части.
- Все треугольники, образованные диагоналями, равны или подобны.
- NР 2 = МN 2 + МР 2, где NР — диагональ (для удобства обозначается литерой «t»), а MN и МР — стороны фигуры.
- Диаметр окружности, которая описана вокруг искомого геометрического тела, эквивалентен его диагонали.
- При пересечении диагоналей образуются равнобедренные малые и прямоугольные большие треугольники.
- Половина значения длины диагонали эквивалентна медиане и высоте, проведенной из любой вершины фигуры. Диагональ — биссектриса только в квадрате.
- Через точку пересечения диагоналей можно провести среднюю линию прямоугольника.
Как вычислить площадь прямоугольника с разными сторонами
Согласно данной документации, на каждые 8 «квадратов» поверхности пола приходиться должно не менее одного «квадрата» источника естественного светового потока. На мансардных этажах эта пропорция не может быть менее 1:10.
Чтобы обеспечить качественное проведение ремонта нужно заранее выяснить, как вычислить площадь пола и другие необходимые размеры помещения. Подготовительный этап также предусматривает приобретение стройматериалов и тогда в процессе ремонта затраты будут сведены к минимуму, поскольку не получится больших остатков и стоимость доставки обойдется недорого.
Ручной способ вычислений как узнать площадь пола займет больше времени, чем при проведении расчетов на уже имеющемся строительном калькуляторе, но он позволяет узнать более точные результаты.
Узнаём площадь треугольного помещения
Когда другая часть комнаты располагается не перпендикулярно относительно основной площади, это означает, что между двумя прямоугольниками присутствует еще и треугольник, имеющий прямой угол.
В данном случае площадь треугольника вычисляют по формуле: S = (a х b):2 и прибавляют к общему итогу. Например, а = 2, b = 3, тогда S = (2х3): 2 =3 м².
Можно иначе определить площадь:
- Прежде вычисляют квадрату прямоугольника.
- Определяют площадь скошенного треугольного угла.
- Из квадратуры прямоугольника вычитают площадь треугольника.
В том случае, когда треугольник не имеет прямого угла, тогда используют формулу Герона S = √p(p — a)(p — b)(p — c).
Например, стороны его равны 5, 6 и 7 метров, тогда вычисления производят следующим образом:
- Узнают полупериметр треугольника p = (5+6+7):2 = 9.
- В формулу Герона подставляют цифровые значения и получают результат: √(9 х(9-7) х(9-6)х(9-5) =14,7 м².
Информация о прямоугольнике
Прямоугольник — четырехугольная геометрическая фигура, противолежащие стороны которой равны и углы являются прямыми. Частным случаем данной фигуры считается квадрат. У него все углы прямые, а также все стороны равны между собой. Для выполнения расчетов нужно знать основные соотношения, свойства и признаки.
Важным аспектом является идентификация фигуры и применение к ней формул и соотношений. В двухмерной геометрии, которую еще называют эвклидовой, можно встретить необычный признак, позволяющий определить принадлежность четырехугольника к прямоугольнику. Его формулировка следующая: достаточно хотя бы трех углов, равных 90 градусам, чтобы четырехугольник считался прямоугольником.
Утверждение легко доказывается. Это связано с тем, что по теореме о сумме внутренних углов произвольного четырехугольника, составляющей 360 градусов, четвертый угол тоже равен 90. Нужно выполнить следующие расчеты для определения градусной меры четвертого угла: D = 360 — (90 + 90 + 90) = 90. Необходимо отметить, что смежные с ними углы равны 90.
Свойства и признаки
Очень часто новички путают свойства и признаки фигуры. Однако это совсем различные понятия. Признаками фигуры называются характерные особенности, которые позволяют отнести ее к тому или иному классу. Свойства — совокупность аксиом, позволяющих использовать некоторые данные при решении или доказательстве теорем и тождеств. Прямоугольник обладает следующими признаками:
- Условие параллельности и равенства противоположных сторон.
- Наличие четырех прямых углов.
- Равенство диагоналей.
- Квадрат диагонали равен суммарному значению квадратов двух сторон, которые не противоположны.
- Все стороны не равны между собой.
Очень важно уметь различать геометрические фигуры. Поскольку прямоугольник является параллелограммом, то их часто путают
Основное его отличие — это равенство всех углов 90 градусов. У параллелограмма и ромба углы будут равняться 90 в том случае, когда они являются квадратами. Последний отличается от искомой фигуры (прямоугольника) равенством всех сторон. Поскольку прямоугольник является частным случаем параллелограмма, то обладает такими же свойствами:
- Углы равны между собой 90 градусов.
- Противолежащие параллельные стороны равны.
- Сумма всех внутренних углов составляет 360.
- Диагональ, проведенная внутри прямоугольника, делит его на два равнозначных треугольника, которые являются равновеликими. Они равны по третьему признаку равенства треугольников (размерности сторон одной фигуры равны значениям сторон другой фигуры).
- Треугольники, полученные при проведении двух диагоналей, равны по всем признакам (углам и сторонам).
- Диагонали пересекаются между собой в точке, которая делит их на четыре равные части.
- Точка пересечения диагоналей — центр симметрии.
- Сумма квадратов двух диагоналей соответствует суммарному значению квадратов всех сторон фигуры.
Периметр и размерность
Нужно ввести некоторые обозначения. Пусть стороны прямоугольника АВСД обозначаются литерами a и b. Поскольку диагонали равны, то можно только обозначить размерность одной буквой «d». Периметром называется сумма всех сторон заданной фигуры. Он обозначается литерой P. Для его нахождения применяется формула такого вида: P = 2 * (a + b). Однако бывает случай, когда известна только одна его сторона и диагональ. Формула приобретает следующий вид: P = 2a + ^(1/2) и P = 2b + ^(1/2).
Чтобы вычислить площадь прямоугольника, следует воспользоваться таким соотношением: S = a * b. Эта базовая формула, которая используется также в строительной сфере и физике. Однако существует еще один способ, с помощью которого можно узнать площадь прямоугольника. Она находится с помощью формулы Герона для треугольников с площадями S1 и S2, а затем результат умножается на 2. Эта особенность основывается на свойстве фигуры, поскольку диагональ делит его на два равных треугольника.
Соотношение имеет следующий вид: S = S1 + S2 = 2S1= 2 * ^(1/2). Переменная «p» — полупериметр треугольника. Он находится таким методом: p = P / 2 = (a + b + d) / 2.
Что такое прямоугольник
Определение
Прямоугольник — параллелограмм, в котором все углы прямые.
В евклидовой геометрии для того, чтобы четырёхугольник был прямоугольником, достаточно, чтобы хотя бы три его угла были прямые, тогда четвёртый угол в силу теоремы о сумме углов многоугольника также будет равен 90°.
Свойства
- Противоположные стороны попарно равны.
- Диагонали равны. Они пересекаются и точкой пересечения делятся пополам.
- Биссектриса отсекает от прямоугольника равнобедренный треугольник.
- Стороны прямоугольника являются его высотами.
- Квадрат диагонали прямоугольника равен сумме квадратов двух его соседних сторон.
- Около любого прямоугольника можно описать окружность, при этом ее диаметр численно равен диагонали прямоугольника.
Признаки
Параллелограмм является прямоугольником при выполнении одного из следующих условий:
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут
- Диагонали параллелограмма равны.
- Сумма квадратов соседних сторон параллелограмма равна квадрату диагонали.
- Все углы параллелограмма равны.
Как вычислить площадь прямоугольника с разными сторонами
Согласно данной документации, на каждые 8 «квадратов» поверхности пола приходиться должно не менее одного «квадрата» источника естественного светового потока. На мансардных этажах эта пропорция не может быть менее 1:10.
Чтобы обеспечить качественное проведение ремонта нужно заранее выяснить, как вычислить площадь пола и другие необходимые размеры помещения. Подготовительный этап также предусматривает приобретение стройматериалов и тогда в процессе ремонта затраты будут сведены к минимуму, поскольку не получится больших остатков и стоимость доставки обойдется недорого.
Ручной способ вычислений как узнать площадь пола займет больше времени, чем при проведении расчетов на уже имеющемся строительном калькуляторе, но он позволяет узнать более точные результаты.