Категории черных вторичных металлов
К отходам черных металлов предъявляют определенные требования. Для отправки сплавов в сталеплавильные печи потребуются определенные операции по их обработке. Перед подачей заявки на перевозку отходов необходимо ознакомиться с ГОСТом черных металлов для определения его стоимости. Черный вторичный лом классифицируют на стальной и чугунный. Если в составе присутствуют легирующие добавки, то его относят к категории «Б». В категорию «А» включены углеродистые: сталь, чугун, присад.
Металлурги и литейщики из-за ограниченности первичной сырьевой базы проявляют активный интерес к вторичному сырью. Использование лома черных металлов вместо металлической руды – это ресурсное, а также энергосберегающее решение. Вторичный черный металл используют как охладитель конвертерной плавки.
Диапазон применения металлов невероятно широк. Черные и цветные неограниченно используются в строительной и машинной индустрии. Не обойтись без цветных металлов и в энергетической промышленности. Редкие и драгоценные идут на изготовление украшений. В искусстве и медицине находят применение как цветные, так и черные металлы. Невозможно представить жизнь человека без них, начиная от хозяйственных принадлежностей и до уникальных приборов и аппаратов.
Цветные металлы
Вторая по величине группа имеет небольшую плотность, хорошую пластичность, невысокую температуру плавления, преобладающие цвета (белый, желтый, красный) и состоит из следующих металлов:
- Легкие – магний, стронций, цезий, кальций. В природе встречаются только в прочных соединениях. Применяются для получения легких сплавов разного назначения.
- Благородные. Примеры металлов: платина, золото, серебро. Они обладают повышенной устойчивостью к коррозии.
- Легкоплавкие – кадмий, ртуть, олово, цинк. Имеют невысокую температуру плавления, участвуют в производстве разных сплавов.
Классификация металлов
К металлам относятся материалы, обладающие совокупностью механических, технологических, эксплуатационных, физических и химических характерных свойств:
- механические подтверждают способность к сопротивлению деформации и разрушению;
- технологические свидетельствуют о способности к разному виду обработки;
- эксплуатационные отражают характер изменения при эксплуатации;
- химические показывают взаимодействие с различными веществами;
- физические указывают на то, как ведет себя материал в разных полях – тепловом, электромагнитном, гравитационном.
Химические, физические и механические свойства тесно взаимосвязаны между собой, так как состав материала устанавливает все остальные его параметры. Например, тугоплавкие металлы являются самыми прочными. Свойства, которые проявляются в состоянии покоя, называются физическими, а под воздействием извне – механическими. Также существуют таблицы классификации металлов по плотности — основному компоненту, технологии изготовления, температуре плавления и другие.
Свойства неметаллов
У них почти все наоборот:
- Ковать нельзя, потому что они хрупкие.
- Не обладают металлическим блеском.
- Не проводят электрический ток (за редким исключением – кремний и графит могут быть проводниками).
- Очень плохо проводят тепло.
- Есть твердые, газообразные, жидкие.
Неметаллов на данный момент 22.
Это первая статья по химии на нашем сайте. Напишите, что не так, что нравится и не нравится. Я буду думать, как сделать материал лучше.
И еще – есть идея записывать видеоролики с объяснениями. Лично вам удобнее разбираться в чем-то, читая текст, или просматривая видео?
Буду рад каждому вашему отзыву и комментарию.
Источник
Технологические свойства
Технологические свойства металлов и сплавов важны в первую очередь при их производстве, так как от них зависит способность подвергаться различным видам обработки с целью создания разнообразных изделий.
Среди основных технологических свойств можно выделить:
- Ковкость.
- Текучесть.
- Свариваемость.
- Прокаливаемость.
- Обработку резанием.
Под ковкостью понимается способность металла менять форму в нагретом и холодном состояниях. Ковкость метала, была открыта еще в глубокой древности, так кузнецы, занимающиеся обработкой металлических изделий, превращением их в мечи или орала (в зависимости от потребности) на протяжении многих веков и исторических эпох были одной из самых уважаемых и востребованных профессий.
Способность двух металлических сплавов при нагревании соединяться друг с другом называют свариваемостью.
Текучесть металла тоже очень важна, она определяет способность расплавленного метала растекаться по заготовленной форме.
Свойство металла закаливаться называется прокаливаемостью.
Взаимодействие с кислородом
Многие металлы могут вступать в реакцию с кислородом. Обычно продуктами этих реакций являются оксиды, но есть и исключения, о которых вы узнаете на следующем уроке. Рассмотрим взаимодействие магния с кислородом.
Магний горит в кислороде, при этом образуется оксид магния:
2Mg + O2 = 2Mg+2O-2
Рис. 1. Горение магния в кислороде
Атомы магния отдают свои внешние электроны атомам кислорода: два атома магния отдают по два электрона двум атомам кислорода. При этом магний выступает в роли восстановителя, а кислород – в роли окислителя.
Видео-опыт: “Горение магния”
Обратите внимание!!! Серебро, золото и платина с кислородом не реагируют. 2
Взаимодействие с галогенами, образуются галогениды
2. Взаимодействие с галогенами, образуются галогениды
Для металлов характерна реакция с галогенами. Продуктом такой реакции является галогенид металла, например, хлорид.
Рис. 2. Горение калия в хлоре
Калий сгорает в хлоре образованием хлорида калия:
2К + Cl2 = 2K+1Cl-1
Два атома калия отдают молекуле хлора по одному электрону. Калий, повышая степень окисления, играет роль восстановителя, а хлор, понижая степень окисления,- роль окислителя
3. Взаимодействие с серой
Многие металлы реагируют с серой с образованием сульфидов. В этих реакциях металлы также выступают в роли восстановителей, тогда как сера будет окислителем. Сера в сульфидах находится в степени окисления -2, т.е. она понижает свою степень окисления с 0 до -2. Например, железо при нагревании реагирует с серой с образованием сульфида железа (II):
Fe + S = Fe+2S-2
Рис. 3. Взаимодействие железа с серой
Видео-опыт: “Взаимодействие цинка с серой”
Металлы также могут реагировать с водородом, азотом и другими неметаллами при определенных условиях.
4. Взаимодействие с водой
Металлы по — разному реагируют с водой:
Помните!!!
Алюминий реагирует с водой подобно активным металлам, образуя основание:
Видео-опыт: “Взаимодействие натрия с водой”
Раскалённое железо реагирует с водяным паром, образуя смешанный оксид — железную окалину Fe3O4 и водород: 3Fe+4H+12O−2 → Fe+2O−2⋅Fe+32O−23 + 4H2
5. Взаимодействие с кислотами
Металлы особо реагируют с серной концентрированной и азотной кислотами:
H2SO4 (конц.) + Me = соль + H2O + Х
Щелочные и щелочноземельные |
Fe, Cr, Al |
Металлы до водорода Сd-Pb |
Металлы после водорода (при t) |
Au, Pt |
|
X |
1)пассивируются на холоде; |
S↓ могут H2S илиSO2 |
— |
H2SO4 (разб) + Cu ≠
Внимание!
Pt, Au + H2SO4 (конц.) →реакции нет
Al, Fe, Cr + H2SO4 (конц.) холодная→ пассивация
Металлы в энергетике
Металлы, в состав которых входят свободные электроны и положительные ионы, считаются хорошими проводниками. Это довольно востребованный материал, характеризующийся пластичностью, высокой электропроводностью и способностью легко отдавать электроны.
Из них делают силовые, радиочастотные и специальные провода, детали для электрических установок, машин, для бытовых электроприборов. Лидерами применения металлов для изготовления кабельной продукции считаются:
- свинец — за большую устойчивость к коррозии;
- медь — за высокую электропроводность, легкость в обработке, стойкость к коррозии и достаточную механическую прочность;
- алюминий — за небольшой вес, устойчивость к вибрациям, прочность и температуру плавления.
Физические свойства неметаллов
Неметаллы – химические элементы, атомы которых стремятся принять чужие электроны. Для них характерны атомные и молекулярные кристаллические решетки. Для атомов неметаллов не характерны общие физические свойства. На данный момент существует 22 неметалла.
Для неметаллов характерен ряд свойств:
- хрупкость (неметаллы нельзя ковать);
- отсутствие блеска;
- непроводимость электрического тока и тепла.
Расположение металлов и неметаллов в периодической таблице Д.И. Менделеева
Определить, является простое вещество металлом или неметаллом, можно с помощью периодической таблицы Менделеева. Металлы располагаются ниже диагонали «водород-бор- кремний-мышьяк-теллур-астат», а неметаллы выше.
Красные ячейки – неметаллы, синие – металлы
Элементы, расположенные вблизи диагонали, обладают смешанными свойствами: проявляют как металлические, так и неметаллические свойства. Они называются полуметаллами.
Красные ячейки – полуметаллы
Полуметаллы имеют ковалентную кристаллическую решетку при наличии металлической проводимости (электропроводности). Валентных электронов у них либо недостаточно для образования полноценной ковалентной связи, либо они не удерживаются достаточно прочно из-за больших размеров атома. Поэтому связь в ковалентных кристаллах этих элементов имеет частично металлический характер.
Закономерности в таблице Д.И. Менделеева
Каждый атом состоит из протонов, нейтронов и электронов. Протоны и нейтроны находятся в ядре, который несет положительный заряд. Вокруг ядра движутся отрицательно заряженные электроны. Атомный номер указывает на количество протонов.
Чем больше заряд ядра, тем сильнее к нему притягиваются электроны. Т.о., атому сложнее отдавать электроны. Поэтому в периоде слева направо, с увеличением порядкового номера металлические свойства ослабевают, а неметаллические – усиливаются.
Неметаллы стремятся принять электроны от других атомов. Период в таблице указывает на количество электронных уровней. По мере увеличения числа орбиталей электроны отдаляются от ядра и атому сложнее удерживать электроны на последних уровнях. Т.о., в группе сверху вниз количество орбиталей возрастает, поэтому металлические свойства усиливаются, а неметаллические – уменьшаются.
Коррозия металла
Коррозия – это процесс разрушения металлов или металлических конструкций под действием кислорода, воды и вредных примесей. Не все металлы подвергаются коррозии. Их стойкость зависит от ряда факторов.
- На благородных металлах не образуется коррозия.
- На поверхности алюминия, титана, цинке, хрома и никеля есть оксидная пленка, которая предотвращает процессы коррозии.
Различают несколько видов коррозии – химическую и электрохимическую.
Химическая коррозия
Химическая коррозия сопровождается химическими реакциями. Она образуется под действием газов.
3 Fe + 2 O2 → Fe3O4
2 Fe + 3 Cl2 → 2 FeCl3
Электрохимическая коррозия
Электрохимическая коррозия – процесс разрушения металлов или металлических конструкций, который сопровождается электрохимическими реакциями. В большинстве металлов находятся примеси. В процессе коррозии электродами могут служить не только металлы, но и его примеси.
Например, в железе могут находиться примеси олова. В этом случае на аноде электроны переносятся от олова к железу и металлы растворяются, т.е. железо подвергаются коррозии. На катоде восстанавливается водород из воды или растворенного кислорода. Электрохимическая коррозия может сопровождаться следующими процессами.
Анод: Fe2+ — 2e → Fe0
Катод: 2H+ + 2e → H2
Способы защиты от коррозии
В промышленности популярны различные методы защиты металлов от коррозии.
Защитные покрытия
Покрытия защищают поверхности от действия окислителей. Ими служат различные вещества:
- покрытие менее активным металлом (железо покрывают оловом);
- краски, лаки, смазки.
- Создание специальных сплавов
Физические свойства сплавов и чистых металлов отличаются. Поэтому для повышения стойкости в сплав необходимо добавить дополнительные металлы.
Химические свойства металлов
Выше уже было сказано, что металлы достаточно легко расстаются со своими электронами (окисляются), т.е. в окислительно-восстановительных реакциях являются восстановителями.
Во всех химических реакциях металлы являются восстановителями, проявляя только положительные степени окисления Me-ne- → Men+ |
- M — металл;
- e- — электрон;
- n — целое число.
Металлы характеризуются низкими величинами энергии ионизации (энергии, необходимой, для отрыва электрона от атома).
Восстановительная способность металлов:
- в периодах уменьшается слева-направо;
- в главных подгруппах увеличивается сверху-вниз.
Металл является более сильным восстановителем, чем он стоит левее в периоде и ниже в главной подгруппе.
Восстановительная активность металлов, в реакциях, протекающих в растворах веществ, зависит от места металла в электрохимическом ряду напряжений.
Химические реакции металлов с неметаллами (простыми веществами):
- с водородом металлы образуют гидриды:Ca+H2 = CaH2 — гидрид кальция
- с галогенами металлы образуют галогениды (соли):Mg+Br2 = MgBr2 — бромид магния
- с кислородом металлы образуют оксиды:4Na+O2 = 2Na2O — оксид натрия
- с серой металлы образуют сульфиды (соли):Fe+S = FeS — сульфид железа
- с углеродом металлы образуют карбиды:Ca+2C = CaC2 — карбид кальция
Химические реакции металлов с сложными веществами:
- металлы от лития до натрия (см. ряд напряжений) вытесняют водород при н.у. с образованием щелочей:
2Na+2H2O = 2NaOH+H2↑ - металлы, стоящие левее водорода, реагируют с разбавленными кислотами с образованием солей и выделением водорода:
2Al+6HCl = 2AlCl3+3H2↑ - металлы реагируют с растворами солей менее активных металлов, восстанавливая при этом менее активный металл, с образованием соли более активного металла:
Fe+CuSO4 = FeSO4+Cu
Сплавы
Металлы легко образуют сплавы — материалы, имеющие металлические свойства и состоящие из двух или большего числа химических элементов (простых веществ), из которых хотя бы один является металлом. Многие металлические сплавы имеют один металл в качестве основы с малыми добавками других компонентов. В принципе, чёткую границу между металлами и сплавами трудно провести, так как даже в самых чистых металлах имеются «следовые» примеси других химических элементов.
Все перечисленные выше предметы — станки, самолёты, автомобили, сковородки, вилки, ложки, ювелирные изделия — делают из сплавов. Металлы-примеси (легирующие компоненты) очень часто изменяют свойства основного металла в лучшую, с точки зрения человека, сторону. Например, и железо и алюминий — довольно мягкие металлы. Но, соединяясь друг с другом или с другими компонентами, они превращаются в сталь, дуралюмин и другие прочные конструкционные материалы. Рассмотрим свойства самых распространённых сплавов.
Сталь — это сплавы железа с углеродом, содержащие последнего до 2 %. В состав легированных сталей входят и другие химические элементы — хром, ванадий, никель. Сталей производится гораздо больше, чем каких-либо других металлов и сплавов, и все виды их возможных применений трудно перечислить. Малоуглеродистая сталь (менее 0,25 % углерода) в больших количествах потребляется в качестве конструкционного материала, а сталь с более высоким содержанием углерода (более 0,55 %) идет на изготовление режущих инструментов: бритвенные лезвия, сверла и др.
Железо составляет основу чугуна. Чугуном называется сплав железа с 2–4 % углерода. Важным компонентом чугуна является также кремний. Из чугуна можно отливать самые разнообразные и очень полезные изделия, например крышки для люков, трубопроводную арматуру, блоки цилиндров двигателей и др.
Бронза — сплав меди, обычно с оловом как основным легирующим компонентом, а также с алюминием, кремнием, бериллием, свинцом и другими элементами, за исключением цинка. Оловянные бронзы знали и широко использовали ещё в древности. Большинство античных изделий из бронзы содержат 75–90 % меди и 25–10 % олова, что делает их внешне похожими на золотые, однако они более тугоплавкие. Это очень прочный сплав. Из него делали оружие до тех пор, пока не научились получать железные сплавы. С применением бронзы связана целая эпоха в истории человечества: Бронзовый век.
Латунь — это сплавы меди с Zn, Al, Mg. Это цветные сплавы с невысокой температурой плавления, их легко обрабатывать: резать, сваривать и паять.
Мельхиор — является сплавом меди с никелем, иногда с добавками железа и марганца. По внешним характеристикам мельхиор похож на серебро, но обладает большей механической прочностью. Сплав широко применяют для изготовления посуды и недорогих ювелирных изделий. Большинство современных монет серебристого цвета изготавливают из мельхиора (обычно 75 % меди и 25 % никеля с незначительными добавками марганца).
Дюралюминий, или дюраль — это сплав на основе алюминия с добавлением легирующих элементов — медь, марганец, магний и железо. Он характеризуется своей стальной прочностью и устойчивостью к возможным перегрузкам. Это основной конструкционный материал в авиации и космонавтике.
Свойства металлических элементов
С физико-химической точки зрения, основное свойство металлов заключается в легкости отрыва их внешнего электрона от атома, другими словами – легкость ионизации атома металла по уравнению:
Me=Me++ e-
Обладая данным свойством, металлы в твердом состоянии представляют собой кристаллическую решетку, в узлах которой находятся ионы металлов, а между ними свободно двигаются делокализованные электроны, образующие так называемый электронный газ. Такой тип химической связи называется металлической связью.
Именно металлическая связь придает элементам основные металлические свойства: высокую электрическую проводимость, теплопроводность, пластичность, ковкость, металлический блеск.
Элементы с наиболее ярко выраженными металлическими свойствами
Наиболее ярко металлические свойства выражены у щелочных металлов (Li, Na, K, Rb, Cs, Fr), что обусловлено низким значением энергий ионизации их атомов. Это очень мягкие металлы (можно резать ножом), обладающие чрезвычайно высокой химической активностью.
Уже при комнатной температуре мягкие металлы быстро окисляются кислородом воздуха, поэтому их хранят под слоем керосина. Под водой щелочные металлы хранить нельзя.
Соединение элементов с водой приводит к взрыву. Реакция протекает с выделением водорода по уравнению:
2Na+2H2O=2NaOH+H2
Поскольку водород образует с воздухом взрывоопасные смеси, а реакция сопровождается выделением большого количества тепла, как правило, происходит взрыв.
Применение благородных металлов в автомобилестроении
Если открыть руководство по эксплуатации автомобиля, то практически в каждом из них можно найти информацию о том, в каких узлах и в каком количестве используются драгоценные металлы.
В основном в автомобилях применяются чистые металлы: серебро, золото, палладий и платина. Так, по данным руководства по эксплуатации автомобилей LADA 110 от 2007 года, в автомобилях десятого семейства применяется 0,103 грамма палладия, менее 0,1 грамма золота и более 3-х грамм серебра. В основном эти металлы используют в контактах и проводниках при производстве реле, прерывателей, датчиков или блоков управления. В автомобилях ГАЗ, например в модели 2217, не применяется палладий, но применяется около 0,1 грамма платины и более 5 грамм серебра. Еще больше драгоценных металлов применяется при производстве КАМАЗов.
Способы определения вида металла самостоятельно
Как определить металл и его происхождение? Вопрос в основном интересует владельцев драгоценностей, которые боятся приобрести за внушительную сумму подделку. Разобраться с этой проблемой можно самостоятельно или обратиться к эксперту.
Ювелир проведет экспертизу, выдаст заключение и возьмет плату за работу. Экспертиза подлинности может стоить от 10 до 20 % от стоимости украшений.
Если возможности обратиться к мастеру нет, то стоит попытаться решить проблему собственными силами.
Сравнение платины, серебра и белого золота
Как проверять?
Владельцам украшений из платины стоит помнить:
- Платина — дорогой и тяжелый металл, из нее часто изготавливают украшения небольшого размера.
- Платину могут заменить серебром, но распознать такую подмену можно по цвету.
- Тяжелее всего отличить от оригинала украшение, на которое нанесли слой платины.
- Клеймо на поверхности изделия не должно вызывать сомнений.
- Платина не боится высоких температур и реагентов.
Стоимость платины постоянно увеличивается, в мире не так много этого металла.
Поэтому, если в магазине покупателю предлагают приобрести изделие внушительного размера из платины, при этом его стоимость достаточно низка, стоит отказаться от покупки.
Платину дешево не продают, да и украшения из нее делают маленькие, металл слишком тяжелый.
Банковский слиток платины
Серебро и платина похожи внешне, поэтому дорогой металл часто заменяют серебром. Такая подделка выдаст себя черным оттенком и пластичностью. Серебро не устойчиво к повреждениям, на его поверхности останется след, а вот испортить таким образом изделие из платины не получится.
Если на поверхность изделия нанесен слой платины, то распознать подделку можно по весу. Когда такой возможности нет, то без нанесения драгоценности повреждений определить ее качество не получится.
Перед покупкой нужно внимательно рассмотреть клеймо, можно использовать для этого лупу. Если в нем все цифры видны хорошо, скорее всего, украшение действительно изготовлено из платины.
По своим химическим свойствам платина не боится высоких температур и кислот. При погружении в кислоту, аммиак и даже при воздействии йода изделие не изменится. Если попробовать нагреть кольцо или серьгу зажигалкой, то температура украшения изменится не сразу. Платина плохо проводит тепло, в отличие от серебра.
Золото и серебро
В домашних условиях чаще других подвергают проверке золото и серебро. Приобрести подделку можно и в ювелирном магазине, но не стоит паниковать.
Проверить серебро на подлинность просто, достаточно погрузить его в горячую воду. Металл тут же нагреется, но недолго будет держать температуру.
Золотые украшения
Если нанести на поверхность украшения из серебра небольшое количество серной мази, изделие тут же потемнеет. Это будет свидетельствовать о подлинности металла.
Низкопробное серебро отличить проще, достаточно просто подержать вещицу в руках, а потом осмотреть ладони. Если на них остались черные следы или разводы, качество серебра оставляет желать лучшего.
Знаки химических элементов
Химический знак или химический символ элемента – это первая или две первые буквы от латинского названия этого элемента.
Например: Ferrum – Fe, Cuprum – Cu, Oxygenium – O и т.д.
Таблица 1: Информация, которую дает химический знак
Сведения | На примере Cl |
Название элемента | Хлор |
Принадлежность элемента к данному классу химических элементов | Неметалл, галоген |
Один атом элемента | 1 атом хлора |
Относительная атомная масса (Ar) данного элемента | Ar(Cl) = 35,5 |
Абсолютная атомная масса химического элементаm = Ar · 1,66·10-24г = Ar · 1,66 · 10-27кг | M(Cl) = 35,5 · 1,66 · 10-24 = 58,9 · 10-24г |
Название химического знака в большинстве случаев читается как название химического элемента. Например, К – калий, Са – кальций, Mg – магний, Mn – марганец.
Случаи, когда название химического знака читается иначе, приведены в таблице 2:
Название химического элемента | Химический знак | Название химического знака(произношение) |
Азот | N | Эн |
Водород | H | Аш |
Железо | Fe | Феррум |
Золото | Au | Аурум |
Кислород | O | О |
Кремний | Si | Силициум |
Медь | Cu | Купрум |
Олово | Sn | Станум |
Ртуть | Hg | Гидраргиум |
Свинец | Pb | Плюмбум |
Сера | S | Эс |
Серебро | Ag | Аргентум |
Углерод | C | Цэ |
Фосфор | P | Пэ |
Классификация металлов
К металлам относятся материалы, обладающие совокупностью механических, технологических, эксплуатационных, физических и химических характерных свойств:
- механические подтверждают способность к сопротивлению деформации и разрушению;
- технологические свидетельствуют о способности к разному виду обработки;
- эксплуатационные отражают характер изменения при эксплуатации;
- химические показывают взаимодействие с различными веществами;
- физические указывают на то, как ведет себя материал в разных полях – тепловом, электромагнитном, гравитационном.
По системе классификации металлов все существующие материалы подразделяются на две объемные группы: черные и цветные. Технологические и механические свойства также тесно связаны. К примеру, прочность металла может являться результатом правильной технологической обработки. Для этих целей используют так называемую закалку и «старение». Химические, физические и механические свойства тесно взаимосвязаны между собой, так как состав материала устанавливает все остальные его параметры. Например, тугоплавкие металлы являются самыми прочными. Свойства, которые проявляются в состоянии покоя, называются физическими, а под воздействием извне – механическими. Также существуют таблицы классификации металлов по плотности — основному компоненту, технологии изготовления, температуре плавления и другие.
Общие физические свойства
Существуют общие физические свойства металлов. К ним относятся:
- Пластичность.
- Характерный блеск.
- Электропроводность.
- Высокая теплопроводность.
- Все, кроме ртути, находятся в твердом состоянии.
Следует понимать, что свойства металлов очень различаются относительно их химической или физической сути. Некоторые из них мало похожи на металлы в обыденном понимании этого термина. Например, ртуть занимает особенное положение. Она при обычных условиях находится в жидком состоянии, не имеет кристаллической решетки, наличию которой обязаны своими свойствами другие металлы. Свойства последних в этом случае условны, с ними ртуть роднят в большей степени химические характеристики.
Интересно!
Элементы первой группы, щелочные металлы, в чистом виде не встречаются, находясь в составе различных соединений.
Самый мягкий металл, существующий в природе — цезий — относится к этой группе. Он, как и другие щелочные подобные вещества, мало общего имеет с более типичными металлами. Некоторые источники утверждают, что на самом деле, самый мягкий металл калий, что сложно оспорить или подтвердить, поскольку ни тот, ни другой элемент не существует сам по себе — будучи выделенным в результате химической реакци они быстро окисляются или вступают в реакцию.
Вторая группа металлов — щелочноземельные — намного ближе к основным группам. Название «щелочноземельные» происходит из древних времен, когда окислы назывались «землями», поскольку они имеют рыхлую рассыпчатую структуру. Более-менее привычными (в обиходном смысле) свойствами обладают металлы начиная с 3 группы. С увеличением номера группы количество металлов убывает
Дмитрий Менделеев смог создать уникальную таблицу химических элементов, главным достоинством которой была периодичность. Металлы и неметаллы в таблице Менделеева располагаются так, что их свойства изменяются периодическим образом.
Периодическая система была составлена Дмитрием Менделеевым во второй половине 19 века. Открытие не только позволило упростить работу химиков, она смогла объединить в себе как в единой системе все открытые химические вещества, а также предсказать будущие открытия.
Создание данной структурированной системы бесценно для науки и для человечества в целом. Именно это открытие дало толчок развитию всей химии на долгие годы.
В интервью одному журналисту ученый объяснил, что работал над ней 25 лет и то, что она ему снилась – вполне естественно, но это не значит, что во сне пришли все ответы.
Созданная Менделеевым система делится на две части:
- периоды – столбики по горизонтали в одну или две строки (ряды);
- группы – вертикальные строчки, в один ряд.
Всего в системе 7 периодов, каждый следующий элемент отличен от предыдущего большим количеством электронов в ядре, т.е. заряд ядра каждого правого показателя больше левого на единицу. Каждый период начинается с металла, а заканчивается инертным газом – именно это и есть периодичность таблицы, ведь свойства соединений меняются внутри одного периода и повторяются в следующем
. При этом, следует помнить, что 1-3 периоды неполные или малые, в них всего 2, 8 и 8 представителей. В полном периоде (т.е. оставшихся четырех) по 18 химических представителей.
В группе располагаются химические соединения с одинаковой высшей , т.е. у них одинаковое электронное строение. Всего в системе представлено 18 групп (полная версия), каждая из которых начинается щелочью и заканчивается инертным газом. Все, представленные в системе субстанции, можно разделить на две основные группы – металл или неметалл.
Для облегчения поиска группы имеют свое название, а металлические свойства субстанций усиливаются с каждой нижней строчкой, т.е. чем ниже соединение, тем больше у него будет атомных орбит и тем слабее электронные связи. Также меняется и кристаллическая решетка – она становится ярко выраженной у элементов с большим количеством атомных орбит.
В химии используют три вида таблиц:
- Короткая – актиноиды и лантаноиды вынесены за границы основного поля, а 4 и все последующие периоды занимают по 2 строчки.
- Длинная – в ней актиноиды и лантаноиды вынесены за границу основного поля.
- Сверхдлинная – каждый период занимает ровно 1 строку.
Главной считается та таблица Менделеева, которая была принята и подтверждена официально, но для удобства чаще используют короткую версию. Металлы и неметаллы в таблице Менделеева располагаются согласно строгим правилам, которые облегчают работу с ней.
Признаки металлов
Различают следующие основные механические свойства:
- Твердость – определяет возможность одного материала противодействовать проникновению другого, более твердого.
- Усталость – количество, а также время циклических воздействий, которое может выдержать материал без изменения целостности.
- Прочность. Заключается в следующем: если приложить динамическую, статическую или знакопеременную нагрузку, то это не приведет к изменению формы, строения и размеров, нарушению внутренней и наружной целостности металла.
- Пластичность – это способность удерживать целостность и полученную форму при деформации.
- Упругость – это деформация без нарушения целостности под воздействием определенных сил, а также после избавления от нагрузки возможность к возращению первоначальной формы.
- Стойкость к трещинам – под влиянием внешних сил в материале они не образуются, а также сохраняется наружная целостность.
- Износостойкость – способность сохранять наружную и внутреннюю целостность при продолжительном трении.
- Вязкость – сохранение целостности при увеличивающихся физических воздействиях.
- Жаростойкость – противостояние изменению размера, формы и разрушению при воздействии высоких температур.